zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Smoothed particle hydrodynamics: Some recent improvements and applications. (English) Zbl 0896.73075
Summary: The smoothed particle hydrodynamics (SPH) computing technique has features which make it highly attractive for simulating dynamic response of materials involving fracture and fragmentation. However, full exploitation of the method’s potential has been hampered by some unresolved problems including stability and the lack of generalized boundary conditions. We address these difficulties and propose solutions. Continuum damage modeling of fracture is discussed at length with scalar and tensor formulations proposed and tested within SPH. Several recent applications involving fracture with predicted fragment patterns and mass distributions are compared with experiment.

74S30Other numerical methods in solid mechanics
74R99Fracture and damage
Full Text: DOI
[1] Lucy, L. B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013 (1977)
[2] Gingold, R. A.; Monaghan, J. J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. not. R. astr. Soc. 181, 375 (1977) · Zbl 0421.76032
[3] Libersky, L. D.; Petschek, A. G.: Smoothed particle hydrodynamics with strength of materials. Proceedings, the next free Lagrange conf. 395, 248-257 (1991)
[4] Wen, Y.; Hicks, D. L.; Swegle, J. W.: Stabilizing SPH with conservative smoothing. Sandia report, SAND94-1932 (1994)
[5] G.R. Johnson and S.R. Beissel, Normalized smoothing functions for impact computations, Int. J. Numer. Methods Engrg., in press.
[6] D. Everhart, Private communication, 1995.
[7] Benz, W.: J.r.buchler numerical modeling of non-linear stellar pulsation: problems and prospects. Numerical modeling of non-linear stellar pulsation: problems and prospects (1990)
[8] Libersky, L. D.; Petschek, A. G.; Carney, T. C.; Hipp, J. R.; Allahdadi, F. A.: High strain Lagrangian hydrodynamics. J. comput. Phys. 109, 67-75 (1993) · Zbl 0791.76065
[9] Bicknell, G. V.: SIAM J. Sci. stat. Comput.. 12, 1198 (1991)
[10] Monaghan, J. J.; Gingold, R. A.: Shock simulation by the particle method SPH. J. comput. Phys. 52, 374 (1983) · Zbl 0572.76059
[11] Herrmann, W.: Constitutive equations for large dynamic deformations. Proceedings, third int. Conf. on consitutive laws for eng. Materials, 45-52 (1991)
[12] Flanagan, D. A.; Taylor, L. M.: An accurate numerical algorithm for stress integration with finite rotations. Comput. methods appl. Mech. engrg. 62, 305-320 (1987) · Zbl 0614.73035
[13] Johnson, G. R.; Cook, W. H.: A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. Proc. 7th int. Symp. on ballistics (1983)
[14] Johnson, G. R.; Holmquist, T. J.: Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures. La-11463-ms (1989)
[15] Hicks, D. L.; Swegle, J. W.; Attaway, S. W.: SPH: instabilities, wall heating, and conservative smoothing, workshop on advances in smooth particle hydrodynamics. Los alamos national laboratory report number LA-UR-93-4375, 223-256 (1993)
[16] Swegle, J. W.; Hicks, D. L.; Attaway, S. W.: Smoothed particle hydrodynamics stability analysis. J. comput. Phys. 116, 123-134 (1995) · Zbl 0818.76071
[17] Dyka, C. T.: Addressing tension instability in SPH methods. NRL report NRL/MR/6384 (1994)
[18] Balsara, D. S.: Von Neumann stability analysis of smoothed particle hydrodynamics--suggestions for optimal algorithms. J. comput. Phys. 121, 357-372 (1995) · Zbl 0835.76070
[19] Morris, J. P. A.: A study of the stability properties of SPH, department of mathematics. Monash university, clayton Victoria Australia, report 94/22, 1-59 (1994)
[20] Dyka, C. T.; Ingel, R. P.: An approach for tension instability in smoothed particle hydrodynamics. Comput. struct. 57, 573-580 (1995) · Zbl 0900.73945
[21] Guenther, C.; Hicks, D. L.; Swegle, J. W.: Conservative smoothing verses artificial viscosity. Sandia report SAND94-1853 (1994)
[22] Swegle, J. W.; Attaway, S. W.; Heinstein, M. W.; Mello, F. J.; Hicks, D. L.: An analysis of smoothed particle hydrodynamics. Sandia report SAND94-2513 (1994)
[23] Richtmyer, R. D.; Morton, K. W.: Difference methods for initial value problems. (1967) · Zbl 0155.47502
[24] Campbell, P. M.: Some new algorithms for boundary value problems in smoothed particle hydrodynamics. DNA report DNA-TR-88-286 (1989)
[25] Takeda, H. T.; Miyama, S. M.; Sekiya, M.: Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progr. theoret. Phys. 92, 939-960 (1994)
[26] Sulsky, D.: The material point method for large deformation solid mechanics. Third U.S. Congress on computational mechanics, 214 (1995)
[27] Brackbill, J. U.; Kothe, D. B.; Zemach, C.: A continuum method for modeling surface tension. J. comput. Phys. (1991) · Zbl 0775.76110
[28] Benz, W.; Asphaug, E.: Impact simulations with fracture. I. methods and tests. Icarus 107, 98-116 (1994)
[29] Benz, W.; Asphaug, E.: Simulations of brittle solids using smoothed particle hydrodynamics. Comput. phys. Comm. 87, 253-265 (1995) · Zbl 0918.73335
[30] Wingate, C. A.; Stellingwerf, R.: SPHINX users manual, LAUR 93-2476. (1994)
[31] Mandell, D. A.; Wingate, C. A.: Prediction of material strength and fracture of Glass using the SPHINX smoothed particle hydrodymanics code. LANL report LA-12830 (1994)
[32] Grady, D. E.; Kipp, M. E.: Int. J. Rock mech. MIN sci. Geomech. abstr.. 17, 147-157 (1980)
[33] Johnson, G. R.; Cook, W. H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures. Engrg. fract. Mech. 21, 31 (1985)
[34] Randles, P. W.; Nemes, J. A.: A continuum damage model for thick composite materials subjected to high-rate dynamic loading. Mech. mater. 13, 1-13 (1992)
[35] Nemes, J. A.; Randies, P. W.: Constitutive modeling of high strain-rate deformation and spall fracture of graphite/peek composites. Mech. mater. 19, 1-14 (1994)
[36] T.C. Carney, Private communication, 1995.
[37] Talreja, R.: A continuum mechanics characterization of damage in composite materials. Proc. R. Soc. 3999, 195 (1985) · Zbl 0561.73090
[38] Piekutowski, A. J.: A simple dynamic model for the formation of debris clouds. Int. J. Impact engrg. 10, 453 (1990)
[39] Petschek, A. G.; Libersky, L. D.: Cylindrical smoothed particle hydrodynamics. J. comput. Phys. 109, 76-83 (1993) · Zbl 0791.76066
[40] Randies, P. W.; Carney, T. C.; Libersky, L. D.; Renick, J. R.; Petschek, A. G.: Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics. Int. J. Impact engrg. 17 (1995)
[41] Renick, J. D.: Response of multi-layered structural panels to high velocity impact. Phillips lab. Report PL-TR-93-1061 (1994)
[42] Dandekar, D. P.: Loss of shear strength in polycrystalline tungsten under shock compression. J. appl. Phys. 47, 4703 (1976)
[43] Asay, J. R.; Chabildas, L. C.; Dandekar, D. P.: Shear strength of shock-loaded polycrystalline tungsten. J. appl. Phys. 51, 4774 (1980)
[44] Randies, P. W.; Carney, T. C.; Libersky, L. D.: Continuum dynamical simulations of bomb fragmentation. Proc. 15th int. Ballistics. symp., jerusalem, Israel 2, 289-296 (1995)
[45] Grady, D. E.; Benson, D. A.: Fragmentation of metal rings by electromagnetic loading. Experimental mech. 23, 393 (1983)
[46] Matuska, D. A.: Explosive modeling. Presented at DNA-sponsored physics and modeling of detonation of aluminized explosives working group meeting (13--14 December, 1993)
[47] Air-to-Surface Weapons Characteristics (JMEM) (U), App. C, Sec. 6, Table C-32, C-153.
[48] Jr., W. Mock; Holt, W. H.: Fragmentation behavior of armco iron and HF-1 steel explosive-filled cylinders. J. appl. Phys. 54, 2344-2351 (1983)