Yavneh, Irad; Shchepetkin, Alexander F.; McWilliams, James C.; Graves, Lee Paul Multigrid solution of rotating, stably stratified flows: The balance equations and their turbulent dynamics. (English) Zbl 0896.76062 J. Comput. Phys. 136, No. 2, 245-262 (1997). The three-dimensional balance equation are analyzed, and a multigrid algorithm with good convergence properties is developed and implemented in parallel on the shared-memory CRAY C-90 computer. An example is shown of a solution for decaying geostrophic turbulence with large Reynolds number. It exhibits a strong asymmetry in its coherent vortex dynamics: anti-cyclones on average become stronger and larger and proceed more rapidly in their merger and alignment interactions. Cited in 8 Documents MSC: 76M20 Finite difference methods applied to problems in fluid mechanics 76U05 General theory of rotating fluids 76V05 Reaction effects in flows 76F10 Shear flows and turbulence 86A10 Meteorology and atmospheric physics 65Y05 Parallel numerical computation Keywords:convergence; shared-memory CRAY C-90 computer; decaying geostrophic turbulence; strong asymmetry; coherent vortex dynamics; anti-cyclones PDF BibTeX XML Cite \textit{I. Yavneh} et al., J. Comput. Phys. 136, No. 2, 245--262 (1997; Zbl 0896.76062) Full Text: DOI OpenURL References: [1] Allen, J. S.; Barth, J. A.; Newberger, P. A., On intermediate models for barotropic continental shelf and slope flow fields. Part III. Comparison of numerical model solutions in periodic channels, J. Phys. Oceanogr., 20, 1949 (1990) [2] Arai, M.; Yamagata, T., Asymetric evolution of eddies in rotating shallow water, Chaos, 4, 163 (1994) [3] Arakaws, A., Computational design for long term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow, J. Comput. Phys., 1, 119 (1966) [4] Arakawa, A.; Lamb, V. R., A Potential Enstrophy and Energy Conserving Schemes for the Shallow Water Equations, Mon. Weath. Rev., 109, 18 (1981) [5] Arakawa, A.; Hsu, Y.-J. G., Energy Conserving and Potential-Enstrophy Dissipating Schemes for the Shallow Water Equations, Mon. Weath. Rev., 118, 1960 (1990) [6] Bates, R.; Li, Y.; McCormick, S. F.; Ruge, J., A glogal shallow-water model based on semi-Lagrangian advection of potential vorticity, Quart. J. Royal Met. Soc., 121, 1981 (1995) [8] Brandt, A., 1984 Multigrid Guide with Applications to Fluid Dynamics (1985) [9] Brandt, A.; Greenwald, J., Multigrid Methods III. Multigrid Methods III, International Series of Numerical Mathematics, 98 (1991), Birkhauser: Birkhauser Basel, p. 143- [10] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insights into large eddy simulation, Fluid Dynamics Research, 10, 199 (1992) [12] Charney, J. G., Geostrophic turbulence, J. Atmos. Sci., 28, 1087 (1971) [13] Cushman-Roisin, B.; Tang, B., Geostrophic turbulence and emergence of eddies beyond the radius of deformation, J. Phys. Ocean., 20, 97 (1990) [14] Farrow, D. E.; Stevens, D. P., A New Tracer Advection Scheme for Bryan and Cox Type Ocean General Circulation Models, J. Phys. Ocean, 25, 1731 (1995) [15] Gent, P. R.; McWilliams, J. C., Consistent balanced models in bounded and periodic domains, Dyn. Atmos. Oceans, 7, 67 (1983) [16] Gent, P. R.; McWilliams, J. C., Balanced models in isentropic coordinates and the shallow water equations, Tellus A, 36, 166 (1984) [17] Physica D, 98, 379 (1996) [18] Hörmander, L., The analysis of linear partial differential operators II (1983), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York [19] Hyman, J. M., (Bishop, A. R.; Campbell, D. K.; Nicolaenko, B., Nonlinear Problems: Present and Future (1980), North Holland: North Holland Amsterdam), 91 [20] Leonard, B. P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19, 59 (1979) · Zbl 0423.76070 [21] Leonard, B. P.; Niknafs, H. S., Sharp monotonic resolution of discontinuities without clipping of narrow extrema, Comput. Fluids, 19, 141 (1991) · Zbl 0721.76060 [22] LeVeque, R. J., Numerical Methods for Conservation Laws (1992), Birkhäuser: Birkhäuser Berlin · Zbl 0847.65053 [23] Lorenz, E. N., Energy and numerical weather prediction, Tellus, 12, 364 (1960) [24] McCalpin, J. D., A quantitative analysis of the dissipation inherent in semi-Lagrangian advection, Mon. Weather Rev., 116, 2330 (1988) [26] McWilliams, J. C.; Norton, N. J.; Gent, P. R.; Haidvogel, D. B., A Linear Balance model of wind-driven, midlatitude ocean circulation, J. Phys. Ocean., 20, 1349 (1990) [27] McWilliams, J. C.; Weiss, J. B.; Yavneh, I., Anisotropy and coherent structures in planetary turbulence, Science, 264, 410 (1994) [28] Norton, N. J.; McWilliams, J. C.; Gent, P. R., A numerical model of the Balance Equations in a periodic domain and an example of balanced turbulence, J. Comput. Phys., 67, 439 (1986) · Zbl 0599.76032 [29] Polvani, L. M.; McWilliams, J. C.; Spall, M. A.; Ford, R., The coherent structures of shallow-water turbulence: deformation-radius effects, cyclone/anticyclone asymmetry, and gravity-wave generation, Chaos, 4, 177 (1994) [30] Raymond, W. H., Diffusion and Numerical Filters, Mon. Weather Rev., 122, 757 (1994) [31] Sawdey, Aa.; O’Keefe, M.; Bleck, R.; Numrich, R. W., The design, implementation, and performance of a parallel ocean circulation model, (Hoffman, G-R.; Kreitz, N., Coming of Age (1995), World Scientific: World Scientific Singapore), 523 [32] Shchepetkin, A.; McWilliams, J. C., Quasi-monotone advection schemes based on explicit locally adaptive dissipation, Mon. Weather Rev. (1997) [33] Yavneh, I.; McWilliams, J. C., Robust multigrid solution of the Shallow-Water Balance Equations, J. Comput. Phys., 119, 1 (1995) · Zbl 0919.76063 [34] Yavneh, I.; McWilliams, J. C., Breakdown of the slow manifold in the Shallow Water Equations, Geo. Astron. Fluid Dyn., 75, 131 (1994) [35] Yavneh, I., Multigrid smoothing factors for red-black Gauss-Seidel relaxation applied to a class of elliptic operators, SIAM J. Numer. Anal., 32, 1126 (1995) · Zbl 0834.65114 [36] Yavneh, I.; McWilliams, J. C., Multigrid solution of stably stratified flows: The Quasigeostrophic Equations, J. Sci. Comput., 11, 47 (1996) · Zbl 0866.76058 [37] Zalesak, S. T., Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids, J. Comput. Phys., 31, 335 (1979) · Zbl 0416.76002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.