×

Suboptimal control of linear delay systems via Legendre series. (English) Zbl 0897.49018

Summary: A method for finding the suboptimal control of linear delay systems with a quadratic cost functional using Legendre series is discussed. The state variable, state delay, state rate, and the control vector are expanded in the shifted Legendre series with unknown coefficients. The relation between the coefficients of the state rate with state variable is provided and the necessary condition of optimality is derived as a linear system of algebraic equations. A numerical example is included to demonstrate the validity and the applicability of the technique.

MSC:

49K25 Optimal control problems with equations with ret.arguments (nec.) (MSC2000)
49M29 Numerical methods involving duality
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] M. Jamshidi, C. M. Wang: A computational algorithm for large-scale nonlinear time-delays systems. IEEE Trans. Systems Man Cybernet. SMC-14 (1984), 2-9. · Zbl 0538.93002
[2] G. L. Kharatishvili: The maximum principle in the theory of optimal process with time-lags. Dokl. Akad. Nauk SSSR 136 (1961), 39-42.
[3] K. Inoue H. Akaski K. Ogino, Y. Sawaragi: Sensitivity approaches to optimization of linear system with time delay. Automatica 7 (1971), 671-679. · Zbl 0225.49009
[4] M. Jamshidi, M. Razzaghi: Optimization of linear systems with input time-delay. Kybernetika 11 (1975), 375-384. · Zbl 0333.49036
[5] M. MaleK-Zavarei: Near-optimum design of nonstationary linear systems with state and control delays. J. Optim. Theory Appl. 50 (1980), 73-88. · Zbl 0394.49017 · doi:10.1007/BF00934590
[6] M. S. Corrington: Solutions of differential and integral equations with Walsh functions. IEEE Trans. Circuit Theory 20 (1973), 470-476.
[7] C. Hwang, Y. P. Shih: Optimal control of delay systems via block pulse functions. J. Optim. Theory Appl. 45 (1985), 101-112. · Zbl 0541.93031 · doi:10.1007/BF00940816
[8] P. N. Paraskevopoulo P. G. Sklavounos, G. Ch. Georgiou: The operation matrix of integration for Bessel functions. J. Franklin Inst. 557 (1990), 329-341. · Zbl 0717.93012
[9] C. Hwang, Y. P. Shih: Solution of integral equations via Laguerre polynomias. Comput. Electr. Engrg. 9 (1982), 123-129. · Zbl 0503.65076 · doi:10.1016/0045-7906(82)90018-0
[10] M. Razzaghi, M. Razzaghi: Solution of linear two-point boundary value problems and optimal control of time-varying systems by shifted Chebyshev approximations. J. Franklin Inst. 557 (1990), 321-328. · Zbl 0714.49032 · doi:10.1016/0016-0032(90)90025-E
[11] I. R. Horng, J. H. Chou: Analysis, parameter estimation and optimal control of time-delay systems via Chebyshev series. Internat. J. Control 41 (1985), 1221-1234. · Zbl 0562.93034 · doi:10.1080/0020718508961193
[12] M. H. Perng: Direct approach for the optimal control of linear time-delay systems via shifted Legendre polynomials. Internat. J. Control 43 (1986), 1897-1904. · Zbl 0586.93026 · doi:10.1080/00207178608933577
[13] M. Razzaghi M. Razzaghi, and A. Arabshahi: Solutions of convolution integral and Fredholm integral equation via double Fourier series. Appl. Math. Comput. 40 (1990), 215-224. · Zbl 0717.65113 · doi:10.1016/0096-3003(90)90065-B
[14] C. Hwang, M. Y. Chen: A direct approach using the shifted Legendre series expansion for near optimum control of linear time-varying systems with multiple state and control delays. Internat. J. Control 43 (1986), 1673-1692. · Zbl 0586.93048 · doi:10.1080/00207178608933567
[15] I. S. Gradshteyn, I. M. Ryzhik: Tables of Integrals, Series and Products. Academic Press, New York 1979. · Zbl 0918.65002
[16] C. Canuto M. Y. Hussaini, and T. A. Zang: Spectral Methods in Fluid Dynamics. Springer-Verlag, New York 1988.
[17] P. Lancaster: Theory of Matrices. Academic Press, New York 1969. · Zbl 0186.05301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.