×

zbMATH — the first resource for mathematics

Robust constrained model predictive control using linear matrix inequalities. (English) Zbl 0897.93023
In this paper an approach is presented to overcome the main disadvantage of current design techniques for model predictive control (MPC), i.e. their inability to deal explicitly with plant model uncertainty. Hence, the authors present – what is best characterized by the following from their abstract – ‘an approach for MPC synthesis that allows for explicit incorporation of the description of plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a worst-case infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques \(\dots\) this problem is reduced to a convex optimization involving linear matrix inequalities.’
The authors show that this design results in a control that robustly stabilizes the set of uncertain plants. Several extensions are discussed and well-chosen examples illustrate the theoretical results of this well readable paper which is of interest for control engineers and applied mathematicians interested in automatic control.
Reviewer: I.Troch (Wien)

MSC:
93B51 Design techniques (robust design, computer-aided design, etc.)
15A39 Linear inequalities of matrices
93D21 Adaptive or robust stabilization
Software:
LMI toolbox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alizadeh, F.; Haeberly, J.-P.A.; Overton, M.L., A new primal-dual interior-point method for semidefinite programming, () · Zbl 0819.65098
[2] Allwright, J.C.; Papavasiliou, G.C., On linear programming and robust model-predictive control using impulse-responses, Syst. control lett., 18, 159-164, (1992) · Zbl 0756.90059
[3] Bernussou, J.; Peres, P.L.D.; Geromel, J.C., A linear programming oriented procedure for quadratic stabilization of uncertain systems, Syst. control lett., 13, 65-72, (1989) · Zbl 0678.93042
[4] Bitmead, R.R.; Gevers, M.; Wertz, V., ()
[5] Boyd, S.; El Ghaoui, L., Methods of centers for minimizing generalized eigenvalues, Lin. algebra applics, 188, 63-111, (1993) · Zbl 0781.65051
[6] Boyd, S.; Ghaoui, L.El; Feron, E.; Balakrishnan, V., ()
[7] Campo, P.J.; Morari, M., ∞-norm formulation of model predictive control problems, (), 339-343
[8] Campo, P.J.; Morari, M., Robust model predictive control, ()
[9] Clarke, D.W.; Mohtadi, C., Properties of generalized predictive control, Automatica, 25, 859-875, (1989) · Zbl 0699.93028
[10] Clarke, D.W.; Mohtadi, C.; Tuffs, P.S., Generalized predictive control—II. extensions and interpretations, Automatica, 23, 149-160, (1987) · Zbl 0621.93033
[11] Feron, E.; Balakrishnan, V.; Boyd, S., Design of stabilizing state feedback for delay systems via convex optimization, Tucson, AZ, (), 147-148
[12] Gahinet, P.; Nemirovski, A.; Lamb, A.J.; Chilali, M., ()
[13] García, C.E.; Morari, M., Internal model control 1. A unifying review and some new results, Ind. engng chem. process des. dev., 21, 308, (1982)
[14] Garcia, C.E.; Morari, M., Internal model control 2. design procedure for multivariable systems, Ind. engng chem. process des. dev., 24, 472-484, (1985)
[15] Garcia, C.E.; Morari, M., Internal model control 3. multivariable control law computation and tuning guidelines, Ind. engng chem. process des. dev., 24, 484-494, (1985)
[16] García, C.E.; Prett, D.M.; Morari, M., Model predictive control: theory and practice—a survey, Automatica, 25, 335-348, (1989) · Zbl 0685.93029
[17] Genceli, H.; Nikolaou, M., Robust stability analysis of constrained l1-norm model predictive control, Aiche j., 39, 1954-1965, (1993)
[18] Geromel, J.C.; Peres, P.L.D.; Bernussou, J., On a convex parameter space method for linear control design of uncertain systems, SIAM J. control optim., 29, 381-402, (1991) · Zbl 0741.93020
[19] Kwakernaak, H.; Sivan, R., ()
[20] Liu, R.W., Convergent systems, IEEE trans. autom. control, AC-13, 384-391, (1968)
[21] Muske, K.R.; Rawlings, J.B., Model predictive control with linear models, Aiche J., 39, 262-287, (1993)
[22] Nesterov, Yu.; Nemirovsky, A., ()
[23] Packard, A.; Doyle, J., The complex structured singular value, Automatica, 29, 71-109, (1993) · Zbl 0772.93023
[24] Polak, E.; Yang, T.H., Moving horizon control of linear systems with input saturation and plant uncertainty—1: robustness, Int. J. control, 53, 613-638, (1993) · Zbl 0782.93050
[25] Polak, E.; Yang, T.H., Moving horizon control of linear systems with input saturation and plant uncertainty—2: disturbance rejection and tracking, Int. J. control, 58, 639-663, (1993) · Zbl 0782.93051
[26] Rawlings, J.B.; Muske, K.R., The stability of constrained receding horizon control, IEEE trans. autom. control, AC-38, 1512-1516, (1993) · Zbl 0790.93019
[27] Tsirukis, A.G.; Morari, M., Controller design with actuators constraints, (), 2623-2628
[28] Vandenberghe, L.; Boyd, S., A primal-dual potential reduction method for problems involving linear matrix inequalities, Math. program., 69, 205-236, (1995) · Zbl 0857.90104
[29] Wie, B.; Bernstein, D.S., Benchmark problems for robust control design, J. guidance, control, dyn., 15, 1057-1059, (1992)
[30] Yakubovich, V.A., Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints, Syst. control lett., 19, 13-22, (1992) · Zbl 0776.49009
[31] Zafiriou, E., Robust model predictive control of processes with hard constraints, Comput. chem. engng., 14, 359-371, (1990), 1990
[32] Zafiriou, E.; Marchal, A., Stability of SISO quadratic dynamic matrix control with hard output constraints, Aiche j., 37, 1550-1560, (1991)
[33] Zheng, A.; Balakrishnan, V.; Morari, M., Constrained stabilization of discrete-time systems, Int J. robust nonlin. control, 5, 461-485, (1995) · Zbl 0844.93066
[34] Zheng, Z.Q.; Morari, M., Robust stability of constrained model predictive control, (), 379-383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.