×

On a singularly perturbed equation with Neumann boundary condition. (English) Zbl 0898.35004

The paper deals with the study of the problem \[ -\varepsilon^2\Delta u+u=u^q, \quad u>0\quad \text{in }\Omega, \qquad \partial u/\partial\nu=0\quad\text{on }\partial\Omega, \] where \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^n\) and \(q\) is a subcritical exponent. This problem may be viewed as a prototype of pattern formation in biology and it is also related to the steady state problem for a chemotactic aggregation model with logarithmic sensitivity. The above problem has been intensively studied by several authors (Lin, Ni, Takagi, Gui, Wang and others) who obtained strong results on the existence of a least energy solution, the study of asymptotics as \(\varepsilon\to 0\) etc. The author applies a method which is originally due to Li and Nirenberg in order to construct solutions with single peak and multi-peak on \(\partial\Omega\). Another result establishes the existence of multi-peak solutions with a prescribed number of local maximum points in \(\overline\Omega\).
The paper is interesting and the powerful methods developed by the authors allow the study of wide classes of boundary value problems.

MSC:

35B25 Singular perturbations in context of PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations
58C15 Implicit function theorems; global Newton methods on manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosetti A., Arch. Rat. Mech. Anal
[2] DOI: 10.1006/jfan.1993.1053 · Zbl 0793.35033 · doi:10.1006/jfan.1993.1053
[3] Adimurthi, Estratto da Nonlinear Analysis Scuola Normale Superiore, Pisa 113 pp 9– (1991)
[4] Adimurthi, Proc. Indian Acad. Sci (Math. Sci). 100 pp 275– (1990)
[5] DOI: 10.1007/BF00380771 · Zbl 0839.35041 · doi:10.1007/BF00380771
[6] DOI: 10.1016/0022-1236(73)90051-7 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[7] DOI: 10.1016/0022-1236(91)90026-2 · Zbl 0722.53032 · doi:10.1016/0022-1236(91)90026-2
[8] Bahri A., Also in the prprint series of Centr de Mathématiques (1991)
[9] Berstycki H., Arch. Rational Mech. Anal 82 pp 313– (1983)
[10] H. Brezis L. Nirenberg Nonlinear Funcitonal Analysis and Applications, book in prparation
[11] Chang K. C., Infinite dimensional Morse theory and multiple soluiton problems (1993)
[12] DOI: 10.1016/0022-1236(86)90096-0 · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[13] Gidas, B., Ni, W.–M., Nirenberg, L., Gierer and Meinhardt, H.A theory of biological pattern formation Kybernetik30–39.
[14] Gilbarg D., Grundlehoen der mathematischen Wissenschaften 224 (1983)
[15] DOI: 10.1215/S0012-7094-96-08423-9 · Zbl 0866.35039 · doi:10.1215/S0012-7094-96-08423-9
[16] DOI: 10.1016/0022-5193(70)90092-5 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[17] DOI: 10.1007/BF00251502 · Zbl 0676.35032 · doi:10.1007/BF00251502
[18] H. Brezis L. Nirenberg Nonlinear Funcitonal Analysis and Applications, book in prparation Y. Y. LiOn a singularly perturbed elliptic equation, Advances in Differentil Equations to appear
[19] H. Brezis L. Nirenberg Nonlinear Funcitonal Analysis and Applications, book in prparation Y. Y. Li On a singularly perturbed elliptic equation, Advances in Differentil Equations to appear C. S.Li L. Nirenberg The Dirchlet problem for singularly perturbed elliptic equaitons Comm. Pure Appl. Math. to appear
[20] DOI: 10.1016/0022-0396(88)90147-7 · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[21] DOI: 10.1215/S0012-7094-93-07004-4 · Zbl 0796.35056 · doi:10.1215/S0012-7094-93-07004-4
[22] Nirenberg L., Topics in Nonlinear Functional Analysis, Lecture notes (1974) · Zbl 0286.47037
[23] DOI: 10.1016/0022-0396(91)90014-Z · Zbl 0766.35017 · doi:10.1016/0022-0396(91)90014-Z
[24] DOI: 10.1007/BF00380322 · Zbl 0784.35035 · doi:10.1007/BF00380322
[25] Wang Z. Q., Differential Equations 8 pp 1533– (1955)
[26] Zhang L., Acta Math. Sci (English Edition 8 pp 449– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.