×

Infinitely many Lax pairs and symmetry constraints of the KP equation. (English) Zbl 0898.58029

Summary: Starting from a known Lax pair, one can get infinitely many coupled Lax pairs, infinitely many nonlocal symmetries and infinitely many new integrable models in some different ways.
In this paper, taking the well-known Kadomtsev-Petviashvili (KP) equation as a special example, we show that infinitely many nonhomogeneous linear Lax pairs can be obtained by using infinitely many symmetries, differentiating the spectral functions with respect to the inner parameters. Using a known Lax pair and the Darboux transformations (DT), infinitely many nonhomogeneous nonlinear Lax pairs can also be obtained. By means of the infinitely many Lax pairs, DT, and the conformal invariance of the Schwartz form of the KP equation, infinitely many new nonlocal symmetries can be obtained naturally. Infinitely many integrable models in \((1+1)\)-dimensions, \((2+1)\)-dimensions, \((3+1)\)-dimensions and even in higher dimensions can be obtained by virtue of symmetry constraints of the KP equation related to the infinitely many Lax pairs.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q53 KdV equations (Korteweg-de Vries equations)
37C80 Symmetries, equivariant dynamical systems (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/0960-0779(94)E0099-B
[2] DOI: 10.1016/0960-0779(94)E0099-B
[3] DOI: 10.1088/0256-307X/11/10/001
[4] DOI: 10.1088/0256-307X/11/10/001
[5] DOI: 10.1088/0305-4470/25/15/014 · Zbl 0754.35136
[6] DOI: 10.1063/1.529156 · Zbl 0737.35083
[7] DOI: 10.1063/1.529156 · Zbl 0737.35083
[8] DOI: 10.1063/1.529156 · Zbl 0737.35083
[9] DOI: 10.1063/1.529156 · Zbl 0737.35083
[10] DOI: 10.1063/1.529156 · Zbl 0737.35083
[11] DOI: 10.1063/1.529156 · Zbl 0737.35083
[12] DOI: 10.1063/1.528253 · Zbl 0695.58016
[13] DOI: 10.1063/1.528253 · Zbl 0695.58016
[14] DOI: 10.1063/1.528253 · Zbl 0695.58016
[15] DOI: 10.1016/0375-9601(91)90403-U
[16] DOI: 10.1016/0375-9601(91)90403-U
[17] DOI: 10.1016/0375-9601(91)90402-T
[18] DOI: 10.1063/1.530509 · Zbl 0807.35127
[19] DOI: 10.1063/1.530509 · Zbl 0807.35127
[20] DOI: 10.1063/1.530509 · Zbl 0807.35127
[21] DOI: 10.1063/1.530509 · Zbl 0807.35127
[22] DOI: 10.1063/1.530509 · Zbl 0807.35127
[23] DOI: 10.1063/1.530509 · Zbl 0807.35127
[24] DOI: 10.1088/0305-4470/26/17/006 · Zbl 0802.35134
[25] DOI: 10.1088/0305-4470/26/17/006 · Zbl 0802.35134
[26] DOI: 10.1088/0253-6102/25/3/365
[27] Darboux G., C.R. Acad. Sci. Paris 94 pp 1456– (1882)
[28] DOI: 10.1016/0375-9601(95)00962-0 · Zbl 1060.35501
[29] DOI: 10.1016/0375-9601(95)00962-0 · Zbl 1060.35501
[30] DOI: 10.1016/0375-9601(95)00962-0 · Zbl 1060.35501
[31] DOI: 10.1007/BF00750761 · Zbl 0834.35110
[32] DOI: 10.1088/0305-4470/30/5/004 · Zbl 1001.35501
[33] DOI: 10.1088/0305-4470/25/10/023 · Zbl 0754.35153
[34] DOI: 10.1016/0375-9601(94)91111-8 · Zbl 0941.37534
[35] DOI: 10.1016/0375-9601(94)01023-N · Zbl 1020.35522
[36] DOI: 10.1063/1.529862 · Zbl 0762.35103
[37] DOI: 10.1063/1.529862 · Zbl 0762.35103
[38] DOI: 10.1063/1.529862 · Zbl 0762.35103
[39] DOI: 10.1088/0253-6102/27/2/249
[40] DOI: 10.1088/0256-307X/14/1/001
[41] DOI: 10.1007/BF00418048 · Zbl 0326.76017
[42] DOI: 10.1007/BF00418048 · Zbl 0326.76017
[43] DOI: 10.1016/0375-9601(90)90608-Q
[44] DOI: 10.1103/PhysRevLett.71.4099 · Zbl 0972.81559
[45] DOI: 10.1103/PhysRevLett.71.4099 · Zbl 0972.81559
[46] DOI: 10.1143/PTP.70.1508 · Zbl 1098.37536
[47] DOI: 10.1063/1.527999 · Zbl 0695.35184
[48] DOI: 10.1063/1.527999 · Zbl 0695.35184
[49] DOI: 10.1063/1.527999 · Zbl 0695.35184
[50] DOI: 10.1016/0167-2789(87)90220-X · Zbl 0612.58018
[51] DOI: 10.1016/0167-2789(87)90220-X · Zbl 0612.58018
[52] DOI: 10.1063/1.527129 · Zbl 0598.35117
[53] DOI: 10.1063/1.527129 · Zbl 0598.35117
[54] DOI: 10.1063/1.527665 · Zbl 0663.35066
[55] DOI: 10.1063/1.530374 · Zbl 0767.35078
[56] DOI: 10.1063/1.530374 · Zbl 0767.35078
[57] DOI: 10.1063/1.530374 · Zbl 0767.35078
[58] DOI: 10.1063/1.525875 · Zbl 0531.35069
[59] DOI: 10.1063/1.525875 · Zbl 0531.35069
[60] DOI: 10.1016/0375-9601(82)90291-2
[61] DOI: 10.1063/1.524491 · Zbl 0445.35056
[62] DOI: 10.1063/1.524491 · Zbl 0445.35056
[63] DOI: 10.1016/0370-1573(89)90024-0
[64] DOI: 10.1088/0305-4470/22/15/009 · Zbl 0694.35160
[65] DOI: 10.1088/0305-4470/24/7/019 · Zbl 0734.35122
[66] DOI: 10.1016/0167-2789(91)90148-3 · Zbl 0734.35123
[67] DOI: 10.1016/0375-9601(88)90508-7
[68] DOI: 10.1016/0167-2789(86)90187-9 · Zbl 0609.35082
[69] DOI: 10.1016/0167-2789(86)90187-9 · Zbl 0609.35082
[70] DOI: 10.1016/0167-2789(86)90187-9 · Zbl 0609.35082
[71] DOI: 10.1016/0167-2789(90)90050-Y · Zbl 0707.35144
[72] DOI: 10.1063/1.530812 · Zbl 0818.35109
[73] DOI: 10.1063/1.530872 · Zbl 0801.35124
[74] DOI: 10.1088/0305-4470/28/24/019 · Zbl 0876.35103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.