×

On average derivative quantile regression. (English) Zbl 0898.62082

Summary: For fixed \(\alpha\in (0,1)\), the quantile regression function gives the \(\alpha\) th quantile \(\theta_\alpha ({\mathbf x})\) in the conditional distribution of a response variable \(Y\) given the value \({\mathbf X}= {\mathbf x}\) of a vector of covariates. It can be used to measure the effect of covariates not only in the center of a population, but also in the upper and lower tails. A functional that summarizes key features of the quantile specific relationship between \({\mathbf X}\) and \(Y\) is the vector \(\beta_\alpha\) of weighted expected values of the vector of partial derivatives of the quantile function \(\theta_\alpha ({\mathbf x})\). In a nonparametric setting, \(\beta_\alpha\) can be regarded as a vector of quantile specific nonparametric regression coefficients. In survival analysis models (e.g., Cox’s proportional hazard model, proportional odds rate model, accelerated failure time model) and in monotone transformation models used in regression analysis, \(\beta_\alpha\) gives the direction of the parameter vector in the parametric part of the model. \(\beta_\alpha\) can also be used to estimate the direction of the parameter vector in semiparametric single index models popular in econometrics.
We show that, under suitable regularity conditions, the estimate of \(\beta_\alpha\) obtained by using the locally polynomial quantile estimate of P. Chaudhuri [ibid. 19, No. 2, 760-777 (1991; Zbl 0728.62042)] is \(n^{1/2}\)-consistent and asymptotically normal with asymptotic variance equal to the variance of the influence function of the functional \(\beta_\alpha\). We discuss how the estimate of \(\beta_\alpha\) can be used for model diagnostics and in the construction of a link function estimate in general single index models.

MSC:

62J02 General nonlinear regression
62G20 Asymptotic properties of nonparametric inference
62G99 Nonparametric inference
62G05 Nonparametric estimation

Citations:

Zbl 0728.62042
Full Text: DOI

References:

[1] BAILAR, B. A. 1991. Salary survey of U.S. colleges and universities offering degrees in statistics. Amstat News No. 182, 3.
[2] BHATTACHARy A, P. K. and GANGOPADHy AY, A. 1990. Kernel and nearest-neighbor estimation of a conditional quantile. Ann. Statist. 18 1400 1415. Z. · Zbl 0706.62040 · doi:10.1214/aos/1176347757
[3] BICKEL, P. J. and DOKSUM, K. A. 1981. An analysis of transformation revisited. J. Amer. Statist. Assoc. 76 296 311. Z. JSTOR: · Zbl 0464.62058 · doi:10.2307/2287831
[4] BICKEL, P. J., KLAASSEN, C., RITOV, Y. and WELLNER, J. 1994. Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press. Z. · Zbl 0894.62005
[5] BICKEL, P. J. and RITOV, Y. 1996. Local asy mptotic normality of ranks and covariates in Z transformation models. In Festschrift for Lucien Le Cam D. Pollard and G. L. Yang,. eds.. Springer, New York. Z.
[6] BOX, G. E. P. and COX, D. R. 1964. An analysis of transformations. J. Roy. Statist. Soc. Ser. B 26 211 252. Z. JSTOR: · Zbl 0156.40104
[7] BUCHINSKY, M. 1994. Changes in the U.S. wage structure 1963 1987: application of quantile regression. Econometrica 62 405 458. Z. · Zbl 0800.90235 · doi:10.2307/2951618
[8] CARROLL, R. J. and RUPPERT, D. 1988. Transformation and Weighting in Regression. Chapman and Hall, New York. Z. · Zbl 0666.62062
[9] CHAUDHURI, P. 1991a. Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann. Statist. 19 760 777. Z. · Zbl 0728.62042 · doi:10.1214/aos/1176348119
[10] CHAUDHURI, P. 1991b. Global nonparametric estimation of conditional quantile functions and their derivatives. J. Multivariate Anal. 39 246 269. Z. · Zbl 0739.62028 · doi:10.1016/0047-259X(91)90100-G
[11] CUZICK, J. 1988. Rank regression. Ann. Statist. 16 1369 1389. Z. · Zbl 0653.62031 · doi:10.1214/aos/1176351044
[12] DABROWSKA, D. 1992. Nonparametric quantile regression with censored data. Sankhy a Ser. A 54 252 259. Z. · Zbl 0761.62040
[13] DABROWSKA, D. and DOKSUM, K. 1987. Estimates and confidence intervals for median and mean life in the proportional hazard model. Biometrika 74 799 807. Z. JSTOR: · Zbl 0634.62096 · doi:10.1093/biomet/74.4.799
[14] DOKSUM, K. 1987. An extension of partial likelihood methods for proportional hazard models to general transformation models. Ann. Statist. 15 325 345. Z. · Zbl 0639.62026 · doi:10.1214/aos/1176350269
[15] DOKSUM, K. and GASKO, M. 1990. On a correspondence between models in binary regression analysis and in survival analysis. Internat. Statist. Rev. 58 243 252. Z. · Zbl 0713.62073 · doi:10.2307/1403807
[16] DOKSUM, K. and SAMAROV, A. 1995. Nonparametric estimation of global functionals and a measure of explanatory power of covariates in regression. Ann. Statist. 23 1443 1473. Z. · Zbl 0843.62045 · doi:10.1214/aos/1176324307
[17] DUAN, N. and LI, K.-C. 1991. Slicing regression: a link-free regression method. Ann. Statist. 19 505 530. Z. · Zbl 0738.62070 · doi:10.1214/aos/1176348109
[18] EFRON, B. 1991. Regression percentiles using asy mmetric square error loss. Statistica Sinica 1 93 125. Z. · Zbl 0822.62054
[19] FRIEDMAN, J. and TUKEY, J. 1974. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C-23 881 889. Z. · Zbl 0284.68079 · doi:10.1109/T-C.1974.224051
[20] HAN, A. 1987. A non-parametric analysis of transformations. J. Econometrics 35 191 209. Z. · Zbl 0649.62037 · doi:10.1016/0304-4076(87)90023-6
[21] HARDLE, W., HALL, P. and ICHIMURA, H. 1993. Optimal smoothing in single-index models. Ann. \" Statist. 21 157 178. Z. · Zbl 0770.62049 · doi:10.1214/aos/1176349020
[22] HARDLE, W., HART, J., MARRON, J. S. and TSy BAKOV, A. B. 1992. Bandwidth choice for average \" derivative estimation. J. Amer. Statist. Assoc. 87 218 226. Z. JSTOR: · Zbl 0781.62044 · doi:10.2307/2290472
[23] HARDLE, W. and STOKER, T. 1989. Investigating smooth multiple regression by the method of äverage derivatives. J. Amer. Statist. Assoc. 84 986 995. Z. JSTOR: · Zbl 0703.62052 · doi:10.2307/2290074
[24] HARDLE, W. and TSy BAKOV, A. B. 1993. How sensitive are average derivatives? J. Econometrics \" 58 31 48. Z. · Zbl 0772.62021 · doi:10.1016/0304-4076(93)90112-I
[25] HENDRICKS, W. and KOENKER, R. 1992. Hierarchical spline model for conditional quantiles and the demand for electricity. J. Amer. Statist. Assoc. 87 58 68. Z.
[26] HOROWITZ, J. L. 1993. Semiparametric estimation of a regression model with an unknown transformation of the dependent variable. Technical report, Dept. Statistics, Univ. Iowa. Z.
[27] HUBER, P. 1985. Projection pursuit. Ann. Statist. 13 435 525. Z. · Zbl 0595.62059 · doi:10.1214/aos/1176349519
[28] KLAASSEN, C. 1992. Efficient estimation in the Clay ton Cuzick model for survival data. Technical report, Univ. Amsterdam. Z.
[29] KLEIN, R. and SPADY, R. 1993. An efficient semiparametric estimator for binary response models. Econometrica 61 387 421. JSTOR: · Zbl 0783.62100 · doi:10.2307/2951556
[30] KOENKER, R. and BASSET, G. 1978. Regression quantiles. Econometrica 46 33 50. Z. JSTOR: · Zbl 0373.62038 · doi:10.2307/1913643
[31] KOENKER, R., PORTNOY, S. and NG, P. 1992. Nonparametric estimation of conditional quantile function. In Proceedings of the Conference on L -Statistical Analy sis and Related 1 Z. Methods Y. Dodge, ed. 217 229. North-Holland, Amsterdam. Z.
[32] KOENKER, R., NG, P. and PORTNOY, S. 1994. Quantile smoothing splines. Biometrika 81 673 680. Z. JSTOR: · Zbl 0810.62040 · doi:10.1093/biomet/81.4.673
[33] LI, K.-C. 1991. Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 316 342. Z. JSTOR: · Zbl 0742.62044 · doi:10.2307/2290563
[34] MANSKI, C. 1988. Identification of binary response models. J. Amer. Stat. Assoc. 83 729 738. Z. JSTOR: · Zbl 0684.62049 · doi:10.2307/2289298
[35] NEWEY, W. K. and RUUD, P. A. 1994. Density weighted linear least squares. Working Paper 228, Dept. Economics, Univ. California, Berkeley. Z. · Zbl 1126.62023 · doi:10.1017/CBO9780511614491.024
[36] NEWEY, W. K. and STOKER, T. M. 1993. Efficiency of weighted average derivative estimators and index models. Econometrica 61 1199 1223. Z. JSTOR: · Zbl 0780.62102 · doi:10.2307/2951498
[37] POWELL, J., STOCK, J. and STOKER, T. 1989. Semiparametric estimation of index coefficients. Econometrica 57 1403 1430. Z. JSTOR: · Zbl 0683.62070 · doi:10.2307/1913713
[38] PRAKASA RAO, B. L. S. 1983. Nonparametric Function Estimation. Academic Press, New York. Z. · Zbl 0542.62025
[39] RICE, J. 1984. Boundary modification for kernel regression. Comm. Statist. Theory Methods 13 893 900. Z. · Zbl 0552.62022 · doi:10.1080/03610928408828728
[40] ROSE, S. J. 1992. Social Stratification in the United States. New Press, New York. Z.
[41] SAMAROV, A. 1993. Exploring regression structure using nonparametric functional estimation. J. Amer. Stat. Assoc. 88 836 849. Z. JSTOR: · Zbl 0790.62035 · doi:10.2307/2290772
[42] SERFLING, R. 1980. Approximation Theorems of Mathematical Statistics. Wiley, New York. Z. · Zbl 0538.62002
[43] SHERMAN, R. 1993. The limiting distribution of the maximum rank correlation estimator. Econometrica 61 123 137. Z. JSTOR: · Zbl 0773.62011 · doi:10.2307/2951780
[44] STIGLER, S. M. 1986. The History of Statistics: The Measurement of Uncertainty before 1900. Belknap Press, Cambridge, MA. Z. · Zbl 0656.62005
[45] STUART, G. and SUN, J. 1990. Matrix Perturbation Theory. Academic Press, New York. Z.
[46] TRUONG, Y. 1989. Asy mptotic properties of kernel estimates based on local medians. Ann. Statist. 17 606 617. Z. 1 2 · Zbl 0675.62031 · doi:10.1214/aos/1176347128
[47] YE, J. and DUAN, N. 1994. Nonparametric n consistent estimation for the general transformation models. Technical Report 138, Graduate School of Business, Univ. Chicago.
[48] CAMBRIDGE, MASSACHUSETTS 02139-4307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.