zbMATH — the first resource for mathematics

A formal theory of matrix primeness. (English) Zbl 0898.93008
This paper gives a nice compound of problems and applications related to multivariable polynomial matrix primeness, with particular regard to multivariable \((nD)\) systems. A strong algebraic basis is provided, e.g. the frequently used Gröbner bases.

93B25 Algebraic methods
93C35 Multivariable systems, multidimensional control systems
13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
15A23 Factorization of matrices
Full Text: DOI
[1] [BS] D. Bayer and M. Stillman. Computation of Hilbert functions.Journal of Symbolic Computation, 14 (1992), 31–50. · Zbl 0763.13007
[2] [BW] T. Becker and V. Weispfenning.Gröbner Bases: A Computational Approach to Commutative Algebra. Volume 141 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993. · Zbl 0772.13010
[3] [B] B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory. In N. K. Bose, editor,Multidimensional Systems Theory. Reidel, Dordrecht, 1985, pp. 184–232. · Zbl 0587.13009
[4] [BE] D. A. Buchsbaum and D. Eisenbud. Some structure theorems for finite free resolutions.Advances in Mathematics, 12 (1974), 84–139. · Zbl 0297.13014
[5] [CLO] D. Cox, J. Little, and D. O’Shea.Ideals, Varieties and Algorithms, 2nd edition. Springer-Verlag, New York, 1996.
[6] [DM] D. E. Dugeon and R. M. Mersereau.Multidimensional Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1984. · Zbl 0643.94001
[7] [EN] J. Eagon and D. G. Northcott. Ideals defined by matrices, and a certain complex associated to them.Proceedings of the Royal Society, 269 (1962), 188–204. · Zbl 0106.25603
[8] [E] D. Eisenbud.Commutative Algebra with a View Toward Algebraic Geometry. Volume 150 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1995. · Zbl 0819.13001
[9] [F] E. Fornasini. A 2-D systems approach to river pollution modelling.Multidimensional Systems and Signal Processing, 2 (1991), 233–265. · Zbl 0800.93130
[10] [FRZ] E. Fornasini, P. Rocha, and S. Zampieri. State space realization of 2-D finite-dimensional behaviours.SIAM Journal of Control and Optimization, 31 (1993), 1502–1517. · Zbl 0793.93013
[11] [FV1] E. Fornasini and M. E. Valcher. Observability and extendability of finite support nD behaviours. InProceedings of the 34th IEEE Conference on Decision and Control, Piscataway, NJ. IEEE, New York, 1995 volume 3, pp. 1757–1762.
[12] [FV2] E. Fornasini and M. E. Valcher. nD polynomial matrices with applications to multidimensional signal analysis.Multidimensional Systems and Signal Processing, 8 (1997), 387–408. · Zbl 0882.93038
[13] [HW] W. P. Health and P. E. Wellstead. Self-tuning prediction and control for two-dimensional processes. Part 1: Fixed parameter algorithms.International Journal of Control, 62 (1995), 65–108. · Zbl 0829.93041
[14] [J] D. S. Johnson. Coprimeness in Multidimensional Systems and Symbolic Computation. Ph.D. thesis, Loughborough University of Technology, March 1993.
[15] [K] T. Kailath.Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980. · Zbl 0454.93001
[16] [KLMK] S.-Y. Kung, B. C. Levy, M. Morf, and T. Kailath. New results in 2D systems theory. Part II: 2D state-space models–realizations and the notions of controllability, observability and minimality.Proceedings of the IEEE, 65 (1977), 945–961.
[17] [L] Z. P. Lin. On MFDs of multivariate linear nD systems.IEEE Transactions on Circuits and Systems, 35 (1988), 1317–1322. · Zbl 0662.93036
[18] [MLK] M. Morf, B. C. Levy, and S.-Y. Kung. New results in 2D systems theory. Part I: 2D polynomial matrices, factorization and coprimeness.Proceedings of the IEEE, 65 (1977), 861–872.
[19] [M] H. Mounier. Propriétés Structurelles des Systèmes Linéaires a Retards: Aspects Théoriques et Pratiques. Ph.D. thesis, Université Paris-Sud, 1995.
[20] [NWL] G. Naadimuthu, K. W. Wang, and E. S. Lee. Air pollution modelling by quasilinearization.Computers & Mathematics with Applications, 21 (1991), 153–164. · Zbl 0729.90669
[21] [N] N. G. Northcott.Finite Free Resolutions. Volume 71 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1976. · Zbl 0328.13010
[22] [O] U. Oberst. Multidimensional constant linear systems.Acta Applicandae Mathematicae, 20 (1990), 1–175. · Zbl 0715.93014
[23] [P] C. Peskine.An Algebraic Introduction to Complex Projective Geometry. Cambridge University Press, Cambridge, 1996. · Zbl 0843.14001
[24] [R1] D. Rees. The grade of an ideal or module.Proceedings of the Cambridge Philosophical Society, 53 (1957), 28–42. · Zbl 0079.26602
[25] [R2] P. Rocha. Structure and Representation of 2-D Systems. Ph.D. thesis, University of Groningen, 1990.
[26] [RW] P. Rocha and J. C. Willems. Controllability of 2-D systems.IEEE Trnasactions on Automatic Control, 36 (1991), 413–423. · Zbl 0753.93008
[27] [RO] E. Rogers and D. H. Owens.Stability Analysis for Linear Repetitive Processes. Volume 175 of Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin, 1992. · Zbl 0772.93072
[28] [R3] H. H. Rosenbrock.State-Space and Multivariable Theory. Nelson, London, 1970. · Zbl 0246.93010
[29] [V] M. Vidyasagar.Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA, 1985. · Zbl 0655.93001
[30] [W] J. C. Willems. Paradigms and puzzles in the theory of dynamical systems.IEEE Transactions on Automatic Control, 36 (1991), 259–294. · Zbl 0737.93004
[31] [WRO] J. Wood, E. Rogers, and D. H. Owens. Controllable and autonomous nD systems. To appear inMultidimensional Systems and Signal Processing, 1998.
[32] [YG] D. C. Youla and G. Gnavi. Notes onn-dimensional system theory.IEEE Transactions on Circuits and Systems, 26 (1979), 105–111. · Zbl 0394.93004
[33] [YP] D. C. Youla and P. F. Pickel. The Quillen-Suslin theorem and the structure ofn-dimensional elementary polynomial matrices.IEEE Transactions on Circuits and Systems, 31 (1984), 513–518. · Zbl 0553.13003
[34] [Z1] S. Zampieri. A solution of the Cauchy problem for multidimensional discrete linear shift-invariant systems.Linear Algebra and Its Applications, 202 (1994), 143–162. · Zbl 0802.93036
[35] [Z2] E. Zerz. Primeness of multivariate polynomial matrices.Systems and Control Letters, 29 (1996), 139–146. · Zbl 0866.93053
[36] [ZO] E. Zerz and U. Oberst. The canonical Cauchy problem for linear systems of partial difference equations with constant coefficients over the completer-dimensional integral lattice \(\mathbb{Z}\)’.Acta Applicandae Mathematicae, 31 (1993), 249–273. · Zbl 0794.39005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.