Harinck, Pascale Orbital functions on \(G_C/G_R\). Inversion formula of orbital integrals and Plancherel formula. (Fonctions orbitales sur \(G_C/G_R\). Formule d’inversion des intégrales orbitales et formule de Plancherel.) (French) Zbl 0899.22015 J. Funct. Anal. 153, No. 1, 52-107 (1998). Author’s abstract: “Let \(G\) be a complex, connected and simply connected semisimple Lie group with Lie algebra \({\mathfrak g}\). Let \(H\) be a real form of \(G\) with Lie algebra \({\mathfrak h}\). After a general study of orbital functions on \(G/H\), we construct series of orbital functions which are eigen for the action of the \(G\)-invariant differential operators on \(G/H\). Using the results of [the author, J. Funct. Anal. 153, 1-51 (1998; preceding review)] about spherical generalized functions on \(G/H\), we prove the inversion formula for orbital integrals of \(C^\infty\)-functions with compact support on \(G/H\). We deduce the Plancherel formula for the symmetric space \(G/H\)”. Reviewer: J.Ludwig (Metz) Cited in 3 Documents MSC: 22E46 Semisimple Lie groups and their representations 43A85 Harmonic analysis on homogeneous spaces Keywords:semisimple Lie group; real form; orbital functions; differential operators; spherical generalized functions; inversion formula; Plancherel formula; symmetric space PDF BibTeX XML Cite \textit{P. Harinck}, J. Funct. Anal. 153, No. 1, 52--107 (1998; Zbl 0899.22015) Full Text: DOI OpenURL References: [1] Bouaziz, A., Sur les caractères des groupes de Lie réductifs non connexes, J. Funct. Anal., 70, 1-79 (1987) · Zbl 0622.22009 [2] Bouaziz, A., Intégrales orbitales sur les algèbres de Lie réductives, Invent. Math., 115, 163-207 (1994) · Zbl 0814.22005 [3] Bouaziz, A., Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. École Norm. Sup., 27, 573-609 (1994) · Zbl 0832.22017 [5] Bourbaki, N., Groupes et Algèbres de Lie (1981), Hermann: Hermann Paris · Zbl 0483.22001 [6] Bourbaki, N., Groupes et Algèbres de Lie (1975), Diffusion C.C.L.S · Zbl 0329.17002 [7] Delorme, P., Coefficients généralisés de séries principales sphériques et distributions sphériques sur \(G_CG_{R\) · Zbl 0741.43010 [8] Duflo, M.; Vergne, M., La formule de Plancherel des groupes de Lie semi-simples réels, Adv. Stud. Pure Math., 14, 289-336 (1988) · Zbl 0759.22017 [10] Harinck, P., Fonctions généralisées sphériques sur \(G_CG_{R\) · Zbl 0714.43013 [11] Harinck, P., Fonctions généralisées sphériques induites sur \(G_CG_{R\) · Zbl 0755.43005 [12] Harinck, P., Correspondance de distributions sphériques entre deux espaces symétriques du type \(G_CG_{R\) · Zbl 0829.22021 [13] Harinck, P., Inversion des intégrales orbitales et formule de Plancherel pour \(G_CG_{R\) · Zbl 0829.22022 [15] Onishik, A. L.; Vinberg, E. B., Lie Groups and Algebraic Groups (1990), Springer-Verlag: Springer-Verlag Berlin/Heidelberg · Zbl 0722.22004 [16] Sano, S., Distributions sphériques invariantes sur les espaces symétriques semi- simples \(G_CG\), J. Math. Kyoto Univ., 31, 377-417 (1991) · Zbl 0744.43009 [17] Sano, S., Distributions sphériques invariantes sur les espaces symétriques semi-simples \(G_CG\), J. Math. Kyoto Univ., 31, 377-417 (1991) · Zbl 0744.43009 [18] Varadarajan, V. S., Harmonic Analysis on Real Reductive Groups. Harmonic Analysis on Real Reductive Groups, Lecture Notes in Mathematics, 576 (1977), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0354.43001 [19] Warner, G., Harmonic Analysis on Semisimple Lie Groups II (1972), Springer-Verlag: Springer-Verlag Berlin/New York This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.