Ghoudi, Kilani; Khoudraji, Abdelhaq; Rivest, Louis-Paul Statistical characteristics of copulas of bidimensional extreme value distributions. (Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles.) (French) Zbl 0899.62071 Can. J. Stat. 26, No. 1, 187-197 (1998). Summary: Let \((X,Y)\) be a bivariate random vector whose distribution function \(H(x,y)\) belongs to the class of bivariate extreme-value distributions. If \(F_1\) and \(F_2\) are the marginals of \(X\) and \(Y\), then \(H(x,y)= C\{F_1(x), F_2(y)\}\), where \(C\) is a bivariate extreme-value dependence function. This paper gives the joint distribution of the random variables \(Z= \{\log F_1(X)\}/ \{\log F_1(X) F_2(Y)\}\) and \(W= C\{F_1(X),F_2(Y)\}\). Using this distribution, an algorithm to generate random variables having bivariate extreme-value distributions is presented. Furthermore, it is shown that for any bivariate extreme-value dependence function \(C\), the distribution of the random variable \(W= C\{F_1(X), F_2(Y)\}\) belongs to a monoparametric family of distributions. This property is used to derive goodness-of-fit statistics to determine whether a copula belongs to an extreme-value family. Cited in 2 ReviewsCited in 51 Documents MSC: 62H05 Characterization and structure theory for multivariate probability distributions; copulas 62E10 Characterization and structure theory of statistical distributions Keywords:Galambos’s distribution; goodness of fit; Gumbel’s dependence function; jackknife variance estimator; multivariate extreme-value distributions; simulation; U-statistic; goodness-of-fit statistics; copula; extreme-value family × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Anderson, Environmental factors affecting reservoir safety. Statistics for the Environment (publié sous la direction de V. Barnett et de F. Turkman) pp 163– (1993) [2] Barbe, On Kendall’s process, J. Multivariate Anal. 58 pp 197– (1996) [3] Capéra à, A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika 84 pp 567– (1997) [4] Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika 65 pp 141– (1978) · Zbl 0394.92021 [5] Coronel-Brizio, Tests of fit for the generalized extreme value distribution. Rapport technique, Université Simon-Fraser (1996) · Zbl 0875.62177 [6] Deheuvels, On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions, Statist. Probab. Lett. 12 pp 429– (1991) · Zbl 0749.62033 [7] Galambos, Order statistics from sample from multivariate distributions, J. Amer. Statist. Assoc. 70 pp 674– (1975) · Zbl 0315.62022 [8] Galambos, The Asymptotic Theory of Extreme Order Statistics. (1987) · Zbl 0634.62044 [9] Genest, Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données, Rev. Canad. Statist. 14 pp 145– (1986) [10] Genest, A characterization of Gumbel’s family of extreme value distributions, Statist. Probab. Lett. 8 pp 207– (1989) · Zbl 0701.62060 [11] Genest, Statistical inference procedures for bivariate Archimedean copulas, J. Amer. Statist. Assoc. 88 pp 1034– (1993) · Zbl 0785.62032 [12] Geoffroy, Contribution à la théorie des valeurs extrěmes, Publ. Inst. Statist. Univ. Paris 7 pp 37– (1958) [13] Hutchinson, Continuous Bivariate Distributions, Emphasizing Applications. (1990) [14] Joe, Familles of min-stable multivariate exponential and multivariate extreme value distributions, Statist. Probab. Lett. 9 pp 75– (1990) · Zbl 0686.62035 [15] Joe, Multivariate extreme-value distributions with applications to environmental data, Rev. Canad. Statist. 22 pp 47– (1994) [16] Johnson, Distributions in Statistics: Continuous Multivariate Distributions. (1972) · Zbl 0248.62021 [17] Khoudraji, Contributions à l’étude des copules et à la modération des copules aux valeurs extrěmes (1995) [18] Lee, U-Statistics. Theory and Practice. (1990) [19] Marshall, A generalized bivariate exponential distribution, J. Appl. Probab. 4 pp 291– (1967) · Zbl 0155.24001 [20] Nelsen, Advances in Probability Distributions with Given Marginals pp 51– (1991) · doi:10.1007/978-94-011-3466-8_3 [21] Pickands, J. (1981). Multivariate extreme value distributions. Proc. 43rd Session Internal. Statist. Inst. (Buenos Aires), 859-878. · Zbl 0518.62045 [22] Ross, Introduction to Stochastic Processes. (1985) [23] Sibuya, Bivariate extreme statistics, Ann. Inst. Statist. Math. 11 pp 195– (1960) · Zbl 0095.33703 [24] Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 pp 229– (1959) [25] Tawn, Bivariate extreme value theory: Models and estimation, Biometrika 75 pp 397– (1988) · Zbl 0653.62045 [26] Tawn, Modelling multivariate extreme value distributions, Biometrika 77 pp 245– (1990) · Zbl 0716.62051 [27] Tiago de Olivera, Extremal distributions, Rev. Fac. Ciencas Univ. Lisboa A8 pp 299– (1958) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.