Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity. (English) Zbl 0899.76325

Summary: The thermal-diffusion and the diffusion-thermo effects on the mixed free-forced convective and mass transfer steady laminar boundary flow, over a vertical flat plate, are studied, when the viscosity of the fluid is assumed to vary with temperature. The partial differential equations, governing the problem under consideration, are transformed by a similarity transformation into a system of ordinary differential equations which is solved numerically by applying an efficient numerical technique based on the common finite difference method, a tridiagonal matrix manipulation and an iterative procedure. The effects of the viscosity/temperature parameter \(G_r\), the thermal-diffusion parameter Sr (Soret number) and the diffusion-thermo parameter Df (Dufour number) are examined on the flow field of a hydrogen-air mixture as a non-chemical reaction fluid pair. The numerical results have shown that the above mentioned effects have to be taken into consideration in the fluid, heat and mass transfer processes.


76R05 Forced convection
76R10 Free convection
76R50 Diffusion
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI


[1] Jaluria, Y., Natural Convection Heat and Mass Transfer (1980), Pergamon Press: Pergamon Press Oxford
[2] Cebeci, T.; Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer (1988), Springer: Springer Berlin · Zbl 0702.76003
[3] Sparrow, E. M.; Greg, J. L., J. Appl. Mech., 81, 133 (1959)
[4] Merkin, J. H., J. Fluid Mech., 35, 439 (1969)
[5] Lloyd, J. R.; Sparrow, E. M., Int. J. Heat Mass Transfer, 13, 434 (1970)
[6] Wilks, G., Int. J. Heat Mass Transfer, 16, 1958 (1973)
[7] Soundalgekar, V. M.; Vighnesam, N. V.; Pop, I., Int. J. Energy Res., 5, 215 (1981)
[8] Jahagirdar, M. D.; Lahurikar, R. M., Indian J. Pure Appl. Math., 20, 711 (1989)
[9] Hossain, M. A.; Ahmed, M., Int. J. Heat Mass Transfer, 33, 571 (1990)
[10] Merkin, J. H., J. Engng Math., 14, 301 (1980)
[11] Ranganathan, P.; Viskanta, R., Numer. Heat Transfer, 7, 305 (1984)
[12] Joshi, Y.; Gebhart, B., Int. J. Heat Mass Transfer, 28, 1783 (1985)
[13] Ramachandran, N.; Armaly, B. F.; Chen, T. S., ASME. J. Heat Transfer, 107, 637 (1985)
[14] Lai, F. C.; Kulacki, F. A., (Proc. 1988 ASMEIA.I.Ch.E National Heat Transfer Conf., Vol. 1 (1988)), 643
[15] Hassanien, I. A.; Gorla, R. S.R., Int. J. Engng. Sci., 28, 783 (1990)
[16] Gorla, R. S.R.; Lin, P. P.; Yang, A. J., Int. J. Engng Sci., 28, 525 (1990)
[17] Gorla, R. S.R., Int. J. Engng Sci., 30, 349 (1992)
[18] Schlichting, H., Boundary Layer Theory (1968), McGraw-Hill: McGraw-Hill New York
[19] Chen, T. S.; Yuh, C. F., Numer. Heat Transfer, 2, 233 (1979)
[20] Roshenow, W. M.; Harnet, J. P.; Ganic, E. N., (Handbook of Heat Transfer (1985), McGraw-Hill: McGraw-Hill New York)
[21] Chen, T. S.; Tien, H. C.; Armaly, B. F., Int. J. Heat Mass Transfer, 29, 1465 (1986) · Zbl 0603.76086
[22] Zeghmati, B.; Le Palec, G.; Dagvenet, M., Int. J. Heat Mass Transfer, 34, 899 (1991)
[23] Eckert, E. R.G.; Drake, R. M., Analysis of Heat and Mass Transfer (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0247.76079
[24] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1952), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K · Zbl 0049.26102
[25] Hirshfelder, J. O.; Curtis, C. F.; Bird, R. B., Molecular Theory of Gases and Liquids (1954), Wiley: Wiley New York
[26] Mathers, W. G.; Madden, A. J.; Piret, E. L., Ind. Engng Chem., 49, 961 (1957)
[27] Baron, J. R., ARS J., 7, 1053 (1962)
[28] Hellums, J. D.; Churchill, S. W., A.I.Ch.E.Jl, 8, 690 (1962)
[29] Baron, J. R., Int. J. Heat Mass Transfer, 6, 1025 (1963)
[30] Sparrow, E. M.; Minkowycz, W. J.; Eckert, E. R.G., AIAA J., 2, 652 (1964)
[31] Sparrow, E. M.; Minkowycz, W. J.; Eckert, E. R.G., J. Heat Transfer, 64, 508 (1964)
[32] Adams, J. A.; McFadden, P. W., A.I.Ch.E.Jl, 12, 642 (1966)
[33] Jha, B. K.; Singh, A. K., Astrophys. Space Sci., 173, 251 (1990)
[34] Jha, B. K., Astrophys. Space Sci., 191, 283 (1992)
[35] Dursunkaya, Z.; Worek, W. M., Int. J. Heat Mass Transfer, 35, 2060 (1992)
[36] Alabraba, M. A.; Bestman, A. R.; Ogulu, A., Astrophys. Space Sci., 195, 431 (1992)
[37] Herwic, H.; Gersten, K., Warme-und Staffubertr., 20, 47 (1986)
[38] Pop, I.; Gorla, R. S.R.; Rashidi, M., Int. J. Engng Sci., 30, 1 (1992)
[39] Mehta, K. N.; Sood, S., Int. J. Engng Sci., 30, 1083 (1992)
[40] Franchi, F.; Straughan, B., Int. J. Engng Sci., 30, 1349 (1992)
[41] Chapman, A. J., Heat Transfer (1984), Macmillan
[42] Kafoussias, N. G.; Williams, E. W., Int. J. Numer. Meth. Fluids, 17, 145 (1993)
[43] Gebhart, B., Heat Transfer (1971), McGraw-Hill: McGraw-Hill New York
[44] Ling, J. X.; Dybbs, A., (ASME Paper 87-WA/HT-23 (1987), ASME: ASME New York)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.