[1] |
M.S. Alber, R. Camassa, D.D. Holm and J.E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE’s, Lett. Math. Phys., to appear. · Zbl 0808.35124 |

[2] |
Calogero, F.: A solvable nonlinear wave equation. Stud. appl. Math. 70, 189 (1984) · Zbl 0551.35056 |

[3] |
Calogero, F.: Why are certain nonlinear PDE’s both widely applicable and integrable?. What is integrability?, 1 (1991) · Zbl 0808.35001 |

[4] |
Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solitons. Phys. rev. Lett. 71, 1661 (1993) · Zbl 0972.35521 |

[5] |
R. Camassa, D. Holm and J.M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., to appear. · Zbl 0808.76011 |

[6] |
Dorfman, I.: Dirac structures and integrability of nonlinear evolution equations. (1993) · Zbl 0717.58026 |

[7] |
J.K. Hunter, Asymptotic equations for nonlinear hyperbolic waves, in: Surveys in Applied Mathematics, Vol. 2, J.B. Keller, D.W. McLaughlin and G. Papanicolaou, eds. (Plenum Press, New York). · Zbl 0856.35075 |

[8] |
Hunter, J. K.; Saxton, R. A.: Dynamics of director fields. SIAM J. Appl. math. 51, No. 6, 1498 (1991) · Zbl 0761.35063 |

[9] |
J.K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I. Global existence of weak solutions, Arch. Rat. Mech. Anal., to appear. · Zbl 0834.35085 |

[10] |
J.K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II. Zero dispersion and dissipation limits, Arch. Rat. Mech. Anal., to appear. · Zbl 0834.35085 |

[11] |
Olver, P.: Applications of Lie groups to differential equations. (1986) · Zbl 0588.22001 |

[12] |
P. Rosenau, Nonlinear dispersion and compact structures, Phys. Rev. Lett., submitted. · Zbl 0953.35501 |