Anderson, Paul L.; Meerschaert, Mark M. Periodic moving averages of random variables with regularly varying tails. (English) Zbl 0900.62488 Ann. Stat. 25, No. 2, 771-785 (1997). Summary: We establish the basic asymptotic theory for periodic moving averages of i.i.d. random variables with regularly varying tails. The moving average coefficients are allowed to vary according to the seasons. A simple reformulation yields the corresponding results for moving averages of random vectors. Our main result is that when the underlying random variables have finite variance but infinite fourth moment, the sample autocorrelations are asymptotically stable. It is well known in this case that sample autocorrelations in the classical stationary moving average model are asymptotically normal. Cited in 18 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62E20 Asymptotic distribution theory in statistics 60F05 Central limit and other weak theorems Keywords:moving averages; autocorrelation; autocovariance; regular variation; domains of attraction × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Adams, G. and Goodwin, C. (1995). Parameter estimation for periodic ARMA models. J. Time Ser. Anal. 16 127-145. · Zbl 0814.62050 · doi:10.1111/j.1467-9892.1995.tb00226.x [2] Anderson, P. and Vecchia, A. (1993). Asy mptotic results for periodic autoregressive movingaverage processes. J. Time Ser. Anal. 14 1-18. · Zbl 0767.62071 · doi:10.1111/j.1467-9892.1993.tb00126.x [3] Bhansali, R. (1993). Estimation of the impulse response coefficients of a linear process with infinite variance. J. Multivariate Anal. 45 274-290. · Zbl 0771.62066 · doi:10.1006/jmva.1993.1039 [4] Billingsley, P. (1979). Probability and Measure. Wiley, New York. · Zbl 0411.60001 [5] Brockwell, P. and Davis, R. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York. Davis, R. and Resnick, S. (1985a). Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13 179-195. Davis, R. and Resnick, S. (1985b). More limit theory for the sample correlation function of moving averages. Stochastic Process. Appl. 20 257-279. · Zbl 0562.60026 [6] Davis, R. and Resnick, S. (1986). Limit theory for the sample covariance and correlation functions of moving averages. Ann. Statist. 14 533-558. · Zbl 0605.62092 · doi:10.1214/aos/1176349937 [7] Fama, E. (1965). The behavior of stock market prices. Journal of Business 38 34-105. · Zbl 0129.11903 [8] Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York. · Zbl 0219.60003 [9] Gardner, W. and Spooner, C. (1994). The cumulant theory of cy clostationary time-series, I: foundation. IEEE Transactions on Signal Processing 42 3387-3408. [10] Hill, B. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 1163-1173. · Zbl 0323.62033 · doi:10.1214/aos/1176343247 [11] Holtsmark, J. (1919). Uber the Verbreiterung von Spektrallinien. Ann. physik 58 577-630. Janicki, A. and Weron, A. (1994a). Can one see -stable variables and processes? Statist. Sci. 9 109-126. Janicki, A. and Weron, A. (1994b). Simulation and Chaotic Behavior of -Stable Stochastic Processes. Dekker, New York. · Zbl 0955.60508 [12] Jansen, D. and de Vries, C. (1991). On the frequency of large stock market returns: putting booms and busts into perspective. Review of Economics and Statistics 23 18-24. [13] Kokoszka, P. (1996). Prediction of infinite variance fractional ARIMA. Probab. Math. Statist. 16 65-83. · Zbl 0857.60032 [14] Kokoszka, P. and Taqqu, M. (1994). Infinite variance stable ARMA processes. J. Time Ser. Anal. 15 203-220. · Zbl 0804.62082 · doi:10.1111/j.1467-9892.1994.tb00185.x [15] Kokoszka, P. and Taqqu, M. (1996). Parameter estimation for infinite variance fractional ARIMA. Ann. Statist. 24 1880-1913. · Zbl 0896.62092 · doi:10.1214/aos/1069362302 [16] Logan, B., Mallows, C., Rice, S. and Shepp, L. (1973). Limit distributions of self-normalized sums. Ann. Probab. 1 788-809. · Zbl 0272.60016 · doi:10.1214/aop/1176996846 [17] Loretan, M. and Phillips, P. (1994). Testing the covariance stationarity of heavy-tailed time series. Journal of Empirical Finance 1 211-248. [18] Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business 36 394- 419. [19] Meerschaert, M. (1988). Regular variation in Rk. Proc. Amer. Math. Soc. 102 341-348. JSTOR: · Zbl 0648.26006 · doi:10.2307/2045886 [20] Meerschaert, M. (1993). Regular variation and generalized domains of attraction in Rk. Statist. Probab. Lett. 18 233-239. · Zbl 0796.60023 · doi:10.1016/0167-7152(93)90222-5 [21] Mikosch, T., Gadrich, T., Kl üppenberg, C. and Adler, R. (1995). Parameter estimation for ARMA models with infinite variance innovations. Ann. Statist. 23 305-326. · Zbl 0822.62076 · doi:10.1214/aos/1176324469 [22] Mittnik, S. and Rachev, S. (1995). Modelling Financial Assets with Alternative Stable Models. Wiley, New York. · Zbl 0836.90037 [23] Resnick, S. and St aric a, C. (1995). Consistency of Hill’s estimator for dependent data. J. Appl. Probab. 32 139-167. JSTOR: · Zbl 0836.60020 · doi:10.2307/3214926 [24] Ry bin, A. K. (1978). Effectiveness and stability of estimates of the parameters of a strong signal in the case of non-Gaussian noises. Engineering Cy bernetics 16 115-129. [25] Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, London. · Zbl 0925.60027 [26] Stuck, B. W. and Kleiner, B. (1974). A statistical analysis of telephone noise. Bell Sy stem Technical Journal 53 1263-1320. [27] Tay lor, S. (1986). Modelling Financial Time Series. Wiley, New York. [28] Tiao, G. and Grupe, M. (1980). Hidden periodic autoregressive-moving average models in time series data. Biometrika 67 365-373. JSTOR: · Zbl 0436.62076 [29] Tjostheim, D. and Paulsen, J. (1982). Empirical identification of multiple time series. J. Time Ser. Anal. 3 265-282. · Zbl 0506.62070 · doi:10.1111/j.1467-9892.1982.tb00350.x [30] Ula, T. (1993). Forecasting of multivariate periodic autoregressive moving-average processes. J. Time Ser. Anal. 14 645-657. · Zbl 0779.62089 · doi:10.1111/j.1467-9892.1993.tb00172.x This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.