×

zbMATH — the first resource for mathematics

Some optimization problems on solubility sets of separable max-min equations and inequalities. (English) Zbl 0900.65193
MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] ; : Stability in viscoelasticity. North-Holland, Amsterdam 1994.
[2] : Flow-induced vibration. Van Nostrand-Reinhold, New York 1990. · Zbl 0850.73020
[3] : Flow-induced vibration of circular structures. Hemisphere, Washington 1987.
[4] Paidoussis, Appl. Mech. Reviews 40 pp 163– (1987)
[5] Paidoussis, Trans. ASME. J. Pressure Vessel Technol. 115 pp 2– (1993)
[6] Ashley, Trans. ASME. J. Appl. Mech. 17 pp 229– (1950)
[7] Ercengiz, Acta Mech. 112 pp 135– (1995)
[8] Yomosa, J. Phys. Soc. Japan. 56 pp 506– (1987)
[9] Petrov, Acta Mech. 83 pp 39– (1990)
[10] Porenta, Trans. ASME. J. Biomech. Eng. 108 pp 161– (1986)
[11] Tang, Acta Mech. 104 pp 215– (1994)
[12] Chen, Proc. ASCE. J. Eng. Mech. Div. 97 pp 1469– (1971)
[13] Ginsberg, Int. J. Engng. Sci. 11 pp 1013– (1974)
[14] Paidoussis, J. Sound Vibration 20 pp 9– (1972)
[15] Paidoussis, J. Sound Vibration 33 pp 267– (1974)
[16] Paidoussis, Trans. ASME. J. Appl. Mech. 42 pp 780– (1975) · Zbl 0341.73031
[17] Ariaratnam, J. Sound Vibration 107 pp 215– (1986)
[18] Paidoussis, J. Fluids Struct. 2 pp 567– (1988)
[19] Gregory, Proc. Roy. Soc. London 293 pp 512– (1966)
[20] Gregory, Proc. Roy. Soc. London 293 pp 528– (1966)
[21] : Theory of viscoelasticity. An introduction. Academic Press, New York 1982.
[22] Movchan, J. Appl. Math. Mech. 23 pp 686– (1959)
[23] La Mantia, Rheol. Acta 19 pp 88– (1980)
[24] Govaert, Polymer. 36 pp 3589– (1995)
[25] ; : Mathematical problems in linear viscoelasticity. SIAM Studies in Appl. Math., Philadelphia 1992. · Zbl 0753.73003
[26] : Evolutionary integral equations and applications. Birkhäuser, Basel 1993.
[27] Drozdov, [Q. J.] Mech. Appl. Math. 49 pp 235– (1996)
[28] Li, J. Non-Newtonian Fluid Mech. 57 pp 155– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.