×

Numerical homoclinic instabilities and the complex modified Korteweg-de Vries equation. (English) Zbl 0900.65350


MSC:

65Z05 Applications to the sciences
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Curry, J. H.; Herring, J. R.; Loncaric, J.; Orszag, S. A., Order and disorder in two- and three-dimensional Bénard convention, J. Fluid Mech., 147, 1 (1984) · Zbl 0547.76093
[2] Herbst, B. M.; Ablowitz, M. J., Numerically induced chaos in the nonlinear Schrödinger equation, Phys. Rev. Lett., 62, 2065 (1989)
[3] Herbst, B. M.; Ablowitz, M. J., On numerical chaos in the nonlinear Schrödinger equation, (Balebane, M.; Lochak, P.; Sulem, C., Integrable Systems and Applications. Integrable Systems and Applications, Lecture Notes in Physics, Vol. 342 (1989), Springer: Springer Berlin), 192-206 · Zbl 0711.35131
[4] Ablowitz, M. J.; Herbst, B. M.; Keiser, J. M., Nonlinear evolution equations, solitons, chaos and cellular automata, (Chaohao, Gu; Yishen, Li; Guizhang, Tu, Nonlinear Physics (1990), Springer: Springer Berlin), 166-189 · Zbl 0728.35102
[5] Ablowitz, M. J.; Herbst, B. M., On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation, SIAM J. Appl. Math., 50, 339 (1990) · Zbl 0707.35141
[6] Ablowitz, M. J.; Herbst, B. M., On homoclinic boundaries in the nonlinear Schrödinger equation, (Harnad, J.; Marsden, J. E., Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (1990), CRM: CRM Montreal), 121-131 · Zbl 0736.35105
[7] Stuart, J. T.; DiPrima, R. C., The Eckhaus and Benjamin-Feir resonance mechanisms, (Proc. R. Soc. London A, 362 (1978)), 27
[8] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0299.35076
[9] Hirota, R., Direct methods of finding exact solutions of nonlinear evolution equations, (Miura, R. M., Bäcklund Transformations. Bäcklund Transformations, Lecture Notes in Mathematics, Vol. 515 (1976), Springer: Springer New York) · Zbl 0336.35024
[10] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983), Springer: Springer New York · Zbl 0515.34001
[11] Wiggens, S., Global Bifurcations and Chaos (1988), Springer: Springer New York · Zbl 0661.58001
[12] Ablowitz, M. J.; Ladik, J. F., A nonlinear difference scheme and inverse scattering, Stud. Appl. Math., 55, 213 (1976) · Zbl 0338.35002
[13] Taha, T. R.; Ablowitz, M. J., Analytical and numerical aspects of certain nonlinear evolution equations, I. Analytical, J. Comput. Phys., 55, 192 (1984) · Zbl 0541.65081
[14] Part III: Homoclinic orbits for the periodic sine-Gordon equation. Part III: Homoclinic orbits for the periodic sine-Gordon equation, Physica D, 43, 349 (1990) · Zbl 0705.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.