×

The effective model of a stratified solid-fluid medium as a special case of Biot model. (English. Russian original) Zbl 0900.76650

J. Math. Sci., New York 91, No. 2, 2812-2827 (1998); translation from Zap. Nauchn. Semin. POMI 230, 172-195 (1995).
Summary: We establish that the effective model of a layered solid-fluid medium is a special case of the Biot model. By proving this statement, several intermediate media are considered, and for each medium the fronts from a point source are determined. These fronts can have double loops while the loops on corresponding fronts in elastic anisotropic media can be only single.

MSC:

76S05 Flows in porous media; filtration; seepage
74E05 Inhomogeneity in solid mechanics
74J10 Bulk waves in solid mechanics

References:

[1] M. A. Biot, ”Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range,”J. Acoust. Soc. Am.,28, No. 2, 168–191 (1956). · doi:10.1121/1.1908239
[2] M. A. Biot, ”Mechanics of deformation and acoustic propagation in porous media,”J. Appl. Phys.,33, No. 4, 1482–1498 (1962). · Zbl 0104.21401 · doi:10.1063/1.1728759
[3] L. A. Molotkov, ”On the equivalence of layered periodic and transversally isotropic media,”Zap. Nauchn. Semin. LOMI,89, 219–233 (1979). · Zbl 0426.73030
[4] L. A. Molotkov,Matrix Method in the Theory of Wave Propagation in Layered Elastic and Fluid Media [in Russian], Nauka, Leningrad (1984). · Zbl 0587.73038
[5] L. A. Molotkov, ”A new method for deriving averaged effective models of periodic media,”Zap. Nauchn. Semin. LOMI,195, 82–102 (1991).
[6] O. Coussy and T. Bourbie, ”Propagation des ondes acoustiques dans les milieux poreux saturés,”Révue de l’Inst. Franç. Pétrole,39, No. 1, 47–66 (1984). · doi:10.2516/ogst:1984004
[7] M. A. Biot and D. G. Willis, ”The elastic coefficients of the theory of consolidation,”J. Appl. Mech., No. 24, 594–601 (1957).
[8] L. A. Molotkov and A. E. Khilo, ”Investigation of monophase and multiphase effective models describing periodic systems,”Zap. Nauchn. Semin. LOMI,140, 105–122 (1984). · Zbl 0545.76085
[9] L. A. Molotkov, ”On the effective model describing stratified periodic elastic media with slipping contacts,”Zap. Nauchn. Semin. LOMI,210, 192–212 (1994). · Zbl 0874.73013
[10] L. A. Molotkov, ”Peculiarities of wave propagation in layered models of fractured media,”Zap. Nauchn. Semin. LOMI,173, 123–133 (1988).
[11] M. Schoenberg and P. Sen, ”Properties of a periodically stratified acoustic half-space and its relation to a Biot fluid,”J. Acoust. Soc. Am.,73, No. 1, 61–67 (1986). · Zbl 0561.76096 · doi:10.1121/1.388724
[12] M. Schoenberg, ”Wave propagation in alternating fluid and solid layers,”Wave Motion,6, 303–320 (1984). · Zbl 0538.73060 · doi:10.1016/0165-2125(84)90033-7
[13] T. J. Plona, K. W. Winkler, and M. Schoenberg, ”Acoustic waves in alternating fluid/solid layers,”J. Acoust. Soc. Am.,81, No. 5, 1227–1234 (1987). · doi:10.1121/1.395120
[14] Ph. Leclaire and Cohen-Tenoudji, ”Extensions of the Biot theory of wave propagation to frozen porous media,”J. Acoust. Soc. Am.,96, No. 6, 3753–3768 (1992). · doi:10.1121/1.411336
[15] M. Camarasa, ”Contribution of the Biot theory of the acoustic wave propagation in sediments saturated with fluid’s mixture: Generalized Biot’s theory,”Acta Acoustica,1, 125 (1994).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.