## Close-to-convexity properties of Gaussian hypergeometric functions.(English)Zbl 0901.30007

Let $$F(a, b;c;z)$$ be the classical hypergeometric function. The sufficient conditions on $$a$$, $$b$$, $$c$$ under which $$zF(a,b; c,z)$$ or $${c\over ab} [F(a, b; c;z)- 1]$$ is closed-to-convex of order $$\beta$$ in $$| z|< 1$$ are given.
Example: If $$a\in (0,\infty)$$, $$b\in\left(0,{1\over a}\right]$$ and if for some real $$\eta$$, $$|\eta|< {\pi\over 2}$$, $\beta\leq 1-{1\over\cos\eta} (1-\Gamma(a+ b)/\Gamma(a)\Gamma(b))$ then the function $$f(z)= zF(a,b; a+b;z)$$ satisfy: $$\text{Re}[e^{i\eta}(1- z)f'(z)- \beta)]>0$$, $$(| z|< 1)$$.

### MSC:

 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) 33C20 Generalized hypergeometric series, $${}_pF_q$$
Full Text:

### References:

 [1] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (1965), Dover: Dover New York) · Zbl 0171.38503 [2] Anderson, G. D.; Barnard, R. W.; Richards, K. C.; Vamanamurthy, M. K.; Vuorinen, M., Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc., 347, 1713-1723 (1995) · Zbl 0826.33003 [3] Askey, R., Math. Surveys, 45, 37-86 (1990), translation in Russian · Zbl 0722.33009 [4] Bateman, H., (Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions, vol. I (1953), McGraw-Hill: McGraw-Hill New York) · Zbl 0051.30303 [5] Duren, P. L., Univalent functions, (Grundlehren Math. Wiss., vol. 259 (1983), Springer: Springer Berlin) · Zbl 0398.30010 [6] Evans, R. J., Ramanujan’s second notebook: asymptotic expansions for hypergeometric series and related functions, (Andrews, G. E.; Askey, R. A.; Berndt, B. C.; Ramanathan, R. G.; Rankin, R. A., Ramanujan Revisited: Proc Centenary Conf. Univ. of Illinois at Urbana-Champaign (1988), Academic Press: Academic Press Boston), 537-560 · Zbl 0646.33003 [7] Fournier, R.; Ruscheweyh, St., On two extremal problems related to univalent functions, Rocky Mountain J. Math., 24, 2, 529-538 (1994) · Zbl 0818.30013 [8] Frideman, B., Two theorems on Schlicht functions, Duke Math. J., 13, 171-177 (1946) · Zbl 0061.15303 [9] Hille, E., Hypergeometric functions and conformal mappings, J. Differential Equations, 34, 147-152 (1979) · Zbl 0387.33004 [10] Krzyż, J., A counterexample concerning univalent functions, Folia Societatis Scientiarium Lubliniensis. Folia Societatis Scientiarium Lubliniensis, Mat. Fiz. Chem., 2, 57-58 (1962) [11] Lehto, O.; Virtanen, K. I., Quasiconformal mappings in the plane, (Grundlehren Math. Wiss., vol. 126 (1973), Springer: Springer Berlin) · Zbl 0267.30016 [12] Miller, S. S.; Mocanu, P. T., Univalence of Gaussian and confluent hypergeometric functions, (Proc. Amer. Math. Soc., 110 (1990)), 333-342, 2 · Zbl 0707.30012 [13] Nehari, Z., Conformal Mapping (1952), McGraw-Hill: McGraw-Hill New York · Zbl 0048.31503 [14] Ozaki, S., On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 2, 167-188 (1935) [15] Ponnusamy, S., Univalence of Alexander transform under new mapping properties, Complex Variables Theory Appl., 30, 1, 55-68 (1996) · Zbl 0865.30007 [16] Ponnusamy, S., Inclusion theorems for convolution product of second order polylogarithms and functions with the derivative in a halfplane, (Preprint 92 (1995), Department of Mathematics, University of Helsinki), 28, Rocky Mountain J. Math., to appear · Zbl 0915.30012 [17] Ponnusamy, S.; Rønning, F., Duality for Hadamard products applied to certain integral transforms, Complex Variables Theory Appl., 32, 263-287 (1997) · Zbl 0878.30007 [18] Ponnusamy, S.; Vuorinen, M., Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44, 278-301 (1997) · Zbl 0897.33001 [19] Ponnusamy, S.; Vuorinen, M., Univalence and convexity properties of Gaussian hypergeometric functions, (Preprint 82 (1995), Department of Mathematics, University of Helsinki), 34 · Zbl 0973.30017 [20] Rainville, E. D., Special Functions (1960), Chelsea: Chelsea New York · Zbl 0050.07401 [21] Ruscheweyh, St., Convolution in geometric function theory (1982), Les Presses de l’Université de Montréal: Les Presses de l’Université de Montréal Montréal · Zbl 0575.30008 [22] Ruscheweyh, St.; Singh, V., On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl., 113, 1-11 (1986) · Zbl 0598.30021 [23] Silerman, H., Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172, 574-581 (1993) · Zbl 0774.30015 [24] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1958), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0108.26903 [25] Zmorovič, V. A., On some problems in the theory of univalent functions (in Russian), ((1952), Nauk. Zapiski, Kiev. Derjavnyi Univ), 83-94
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.