zbMATH — the first resource for mathematics

On index theorems for linear ordinary differential operators. (English) Zbl 0901.34012
Let \(D\) be a linear ordinary differential operator of arbitrary order with analytic coefficients in the neighbourhood of the origin in \(\mathbb{C}\). B. Malgrange proved [Enseignement Math., II. Ser. 20, 147-176 (1974; Zbl 0299.34011)] that \(D\) has an index as a linear operator both in the vector space \(\mathbb{C}[[x]]\) of formal power series at the origin, and in the subspace \(\mathbb{C}\{x\}\) of the convergent ones. The authors investigate the sheaf of Deligne \(\widetilde F\) with an application to index theorems for \(D\) acting on a space of sections of this sheaf on various sets. Their method relies on homological algebra. Such theorems as the following play a central role in the paper.
Theorem: The linear maps \(D: H^i(U,\widetilde F)\to H^i(U,\widetilde F)\) for \(i\geq 1\) are isomorphisms when \(U\) is a disk, a sector, a multisector or an annulus.

34A30 Linear ordinary differential equations and systems, general
55N30 Sheaf cohomology in algebraic topology
34M99 Ordinary differential equations in the complex domain
34E05 Asymptotic expansions of solutions to ordinary differential equations
Full Text: DOI Numdam EuDML
[1] D.G. BABBITT, V.S. VARADARAJAN, Local moduli for meromorphic differential equations, Astérisque, 169-170 (1989). · Zbl 0683.34003
[2] W. BALSER, W.B. JURKAT, D.A. LUTZ, A general theory of invariants for meromorphic differential equations; Part I, Formal Invariants, Funkcialaj Ekvacioj, 22 (1979), 197-221. · Zbl 0434.34002
[3] P. DELIGNE, Lettre de P. Deligne à B. malgrange (22 août 1977).
[4] P. DELIGNE, Lettre de P. Deligne à J.-P. ramis (7 janvier 1986).
[5] R. GODEMENT, Théorie des faisceaux, Hermann Paris 1958. · Zbl 0080.16201
[6] B. IVERSEN, Cohomology of sheaves, Springer-Verlag 1986. · Zbl 0559.55001
[7] H. KOMATSU, On the index of ordinary differential operators, J. Fac. Sc. Univ. Tokyo, I-A (1971), 379-398. · Zbl 0232.34026
[8] M. LODAY-RICHAUD, Stokes phenomenon, multisummability and differential Galois groups, Ann. Inst. Fourier, Grenoble, 44-3 (1994), 849-906. · Zbl 0812.34004
[9] B. MALGRANGE, Sur LES points singuliers des équations différentielles, L’Enseignement Mathématique, XX, 1-2 (1974), 147-176. · Zbl 0299.34011
[10] B. MALGRANGE, Remarques sur LES équations différentielles à points singuliers irréguliers, in Lecture Notes in Mathematics, Équations différentielles et systèmes de Pfaff dans le plan complexe, édité par R. Gérard et J.-P. Ramis, 712, Springer-Verlag 1979, 77-86. · Zbl 0423.32014
[11] B. MALGRANGE, Équations différentielles à coefficients polynomiaux, Progress in Math., Birkhäuser, 1991. · Zbl 0764.32001
[12] B. MALGRANGE, Sommation des séries divergentes, Expositiones Mathematicæ, 13, 2-3 (1995), 163-222. · Zbl 0836.40004
[13] B. MALGRANGE, J.-P. RAMIS, Fonctions multisommables, Ann. Inst. Fourier, Grenoble, 42, 1-2 (1992), 353-368. · Zbl 0759.34007
[14] J.-P. RAMIS, Dévissage Gevrey, Astérisque, 59-60 (1978), 173-204. · Zbl 0409.34018
[15] J.-P. RAMIS, Memoirs of the am. math. soc., 48 (1984), 296.
[16] W. WASOW, Asymptotic expansions for ordinary differential equations, Dover 1987, Intersc. Publ., 1965. · Zbl 0133.35301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.