Veliov, V. M. Lipschitz continuity of the value function in optimal control. (English) Zbl 0901.49022 J. Optimization Theory Appl. 94, No. 2, 335-363 (1997). Author’s abstract: “For optimal control problems in \(\mathbb{R}^n\) with given target and free final time, we obtain a necessary and sufficient condition for local Lipschitz continuity of the optimal value as a function of the initial position. The target can be an arbitrary closed set, and the dynamics can depend in a measurable way on the time. As a limit case of this condition, we obtain a characterization of the viability property of the target, in terms of perpendiculars to the target instead of tangent cones. As an application, we analyze the convergence of certain discretization schemes for time-optimal problems”. Reviewer: Gianna Stefani (Firenze) Cited in 19 Documents MSC: 49K40 Sensitivity, stability, well-posedness 49K24 Optimal control problems with differential inclusions (nec./ suff.) (MSC2000) 34A60 Ordinary differential inclusions 34H05 Control problems involving ordinary differential equations Keywords:optimal control theory; minimum-time problems; viability; discretization; value function; Lipschitz continuity × Cite Format Result Cite Review PDF Full Text: DOI References: [1] CLARKE, F., Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983. · Zbl 0582.49001 [2] BERKOVITZ, L., Optimal Feedback Controls, SIAM Journal on Control and Optimization, Vol. 27, pp. 991–1006, 1989. · Zbl 0684.49008 · doi:10.1137/0327053 [3] PETROV, N. N., On the Bellman Function for the Time-Optimal Process Problem, Prikladnaia Matematika i Mechanika, Vol. 34, pp. 820–826, 1970 (in Russian). [4] PRONOZIN, Y., On the Problem of Time-Optimal Control, Avtomatika i Telemekhanika, Vol. 9, pp. 13–23, 1977. [5] YUE, R., Lipschitz Continuity of the Value Function in a Class of Optimal Control Problems Governed by Ordinary Differential Equations, Control Theory, Stochastic Analysis, and Applications, World Scientific Publishing, New Jersey, pp. 125–136, 1991. [6] BARDI, M., and FALCONE, M., An Approximation Scheme for the Minimum Time Function, SIAM Journal on Control and Optimization, Vol. 28, pp. 950–965, 1990. · Zbl 0723.49024 · doi:10.1137/0328053 [7] SORAVIA, P., Hölder Continuity of the Minimal Time Function for C 1 -Manifold Targets, Journal of Optimization Theory and Applications, Vol. 75, pp. 401–421, 1992. · Zbl 0792.93058 · doi:10.1007/BF00941476 [8] AUBIN, J. P., Viability Theory, Birkhäuser, Boston, Massachusetts, 1991. [9] CARDALIAGUET, P., Domaines Discriminants en Jeux Différentiels, Thèse, Université Paris-Dauphine, 1994 (in French). [10] CLARKE, F., LEDYAEV, YU., STERN, P., and WOLENSKI, P., Qualitative Properties of Trajectories of Control Systems: A Survey, Journal of Dynamical and Control Systems, Vol. 1, pp. 1–48, 1995. · Zbl 0951.49003 · doi:10.1007/BF02254655 [11] CANNARSA, P., AND SINESTRARI, C., Convexity Properties of the Minimal Time Function, Calculus of Variations, Vol. 3, pp. 273–298, 1995. · Zbl 0836.49013 [12] VELIOV, V., Guaranteed Control of Uncertain Systems: Funnel Equations and Existence of Regulation Maps, Working Paper WP–92–62, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1992. [13] VELIOV, V., Funnel Equations and Regulation of Uncertain Systems, Set-Valued Analysis and Differential Inclusions, Edited by A. Kurshanski and V. Veliov, Birkhäuser, Boston, Massachusetts, pp. 183–199, 1993. · Zbl 0790.93074 [14] AUBIN, J. P., and FRANKOWSKA, H., Set-Valued Analysis, Birkhäuser, Boston, Massachusetts, 1990. [15] VINTER, R., and WOLENSKI, P., Hamilton-Jacobi Theory for Optimal Control Problems with Data Measurable in Time, SIAM Journal on Control and Optimization, Vol. 28, pp. 1404–1420, 1990. · Zbl 0721.49029 · doi:10.1137/0328073 [16] KOROBOV, V., On the Reachable Set, Journal Vyitchislitelnoi Matematiki i Matematitcheskoi Phisiki, Vol. 10, pp. 224–230, 1970 (in Russian). [17] GYURKOVICS, E., Hölder Continuity for the Minimum Time Function in Linear Systems, System Modelling and Optimization, Edited by Thoft-Christensen, Springer Verlag, Berlin, Germany, pp. 338–392, 1984. [18] VELIOV, V., On the Controllability of Control Constrained Linear Systems, Mathematica Balkanica, New Series, Vol. 2, pp. 147–155, 1988. · Zbl 0681.93009 [19] LIVEROVSKII, A., Hölder’s Condition for the Bellman Function, Differentsialnye Uravneniia, Vol. 13, pp. 2180–2187, 1977 (in Russian). · Zbl 0379.49029 [20] LIVEROVSKII, A., Some Properties of the Bellman Function for Linear Symmetric Polysystems, Differentsialnye Uravneniia, Vol. 16, pp. 414–423, 1980 (in Russian). [21] STEFANI, G., Local Controllability of Order p, Proceedings of the Workshop on Differential Equations and Control Theory, Bucharest, Romania, pp. 171–182, 1983. [22] BIANCHINI, R. M., and STEFANI, G., Time-Optimal Problem and Time-Optimal Map, Seminario Matematico dell’Università e del Politecnico di Torino, Dynamical Systems and Ordinary Differential Equations, Vol. 48, pp. 401–429, 1990. · Zbl 0776.49003 [23] BACCIOTTI, A., and STEFANI, G., Self-Accessibility of a Set with Respect to a Multivalued Field, Journal of Optimization Theory and Applications, Vol. 31, pp. 535–552, 1980. · Zbl 0417.49048 · doi:10.1007/BF00934476 [24] BARDI, M., and SORAVIA, P., Time-Optimal Control, Lie Brackets, and Hamilton-Jacobi Equations, Preprint, University of Padova, Padova, Italy, 1991. · Zbl 0795.90098 [25] BARDI, M., and FALCONE, M., Discrete Approximations of the Minimal Time Function for Systems with Regular Optimal Trajectories, Analysis and Optimization of Systems, Edited by A. Bensoussan and J. L. Lions, Springer Verlag, Berlin, Germany, Vol. 144, pp. 103–112, 1990. · Zbl 0708.49012 [26] DONTCHEV, A., and FARKHI, E., Error Estimates for Discretized Differential Inclusions, Computing, Vol. 41, pp. 349–358, 1989. · Zbl 0667.65067 · doi:10.1007/BF02241223 [27] VELIOV, V., Second-Order Discrete Approximations to Linear Differential Inclusions, SIAM Journal on Numerical Analysis, Vol. 29, pp. 439–451, 1992. · Zbl 0754.65070 · doi:10.1137/0729026 [28] VELIOV, V., Second-Order Discrete Approximations to Strongly Convex Differential Inclusions, Systems and Control Letters, Vol. 13, pp. 263–269, 1989. · Zbl 0686.65043 · doi:10.1016/0167-6911(89)90073-X [29] VELIOV, V., Best Approximations of Control/Uncertain Differential Systems by Means of Discrete-Time Systems, Working Paper WP–91–45, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1991. [30] SUSSMAN, H., A General Theorem on Controllability, SIAM Journal on Control and Optimization, Vol. 25, pp. 158–194, 1987. · Zbl 0629.93012 · doi:10.1137/0325011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.