zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems. (English) Zbl 0901.73030
(Author’s summary.) We study damped vibrations of an oscillator, whose viscoelastic properties are described in terms of the fractional calculus applied to Kelvin-Voigt model, Maxwell model, and standard linear solid model. The problem is solved by the Laplace transform method. When passing from image to original, one has to find the roots of an algebraic equation with fractional exponents. A method for solving this equation is proposed which allows one to investigate the roots behaviour in a wide range of single-mass system parameters. A comparison between the results obtained on the basis of the three models has been carried out. It has been shown that for all models the characteristic equations do not possess real roots, but have one pair of complex conjugates, i.e., the test single-mass systems subjected to the impulse excitation do not pass into an aperiodic regime for any magnitudes of the relaxation and creep times. Main characteristics of vibratory motions of the single-mass system as functions of the relaxation time or creep time, which are equivalent to the temperature dependencies, are constructed and analyzed for all three models.

74D99Materials of strain-rate type and history type, other materials with memory
Full Text: DOI
[1] Suzuki, K.: A brief survey of research works about vibration damping. Trans. Jpn. Soc. Mech. Eng. C.59, 2908-2914, (1993) [in Japanese].
[2] Suarez, L. E., Shokooh, A.: On the response of systems with damping materials modeled using fractional calculus. In: Applied mechanics in the Americas, Vol. 2 (Godoy, L. A., Idelsohn S. R., Laura, P. A., Mook, D. T. eds.), pp. 147-152. Santa Fe, Argentina: AAM and AMCA 1995.
[3] Koh, C. G., Kelly, J. M.: Application of fractional derivatives to seismic response analysis of base-isolated models. Earthquake Eng., Struct. Dyn.19, 229-241 (1990). · doi:10.1002/eqe.4290190207
[4] Tsai, C. S.: Temperature effect of viscoelastic dampers during earthquake. J. Struct. Eng.120, 394-409 (1994). · doi:10.1061/(ASCE)0733-9445(1994)120:2(394)
[5] Mace, M.: Damping of beam vibrations by means of a thin constrained viscoelastic layer: evaluation of a new theory. J. Sound Vib.172, 577-591 (1994). · Zbl 1078.74580 · doi:10.1006/jsvi.1994.1200
[6] Rabotnov, Yu. N.: Equilibrium of an elastic medium with aftereffect. Prikl. Matem. Mekh.12, 53-62 (1948) [in Russian].
[7] Rabotnov, Yu. N.: Creep of structural elements. Moscow: Nauka 1966 [in Russian].
[8] Annin, V. D.: Asymptotic expansion of an exponential function of fractional order. Prikl. Matem. Mekh.25, 769-798 (1961) [in Russian]. · Zbl 0109.29901
[9] Rozovsky, M. I.: About one feature of the order of a special operator and its application to the dynamic problem solution. In: Creep and endurance limit (Rabotnov, Yu. N., Malinin, N. I., eds.), pp. 128-133. Novosibirsk: USSR Academy of Sciences 1963 [in Russian].
[10] Meshkov, S. I., Pachevskaya, G. N., Shermergor, T. D.: To the description of internal friction in terms of fractional exponential kernels. Zh. Prikl. Mekh. Tekh. Fiziki3, 103-106 (1966) [in Russian].
[11] Meshkov, S. I., Pachevskaya, G. N., Postnikov, V. S.: Material behaviour under large intensity of the dissipative processes. Fizika Khim. Obrab. Material.2, 135-137 (1967) [in Russian].
[12] Bagley, R. L., Torvik, P. J.: Fractional calculus?a different approach to the analysis of viscoelastically damped structures. AIAA J.21, 741-748 (1983). · Zbl 0514.73048 · doi:10.2514/3.8142
[13] Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol.27, 201-210 (1983). · Zbl 0515.76012 · doi:10.1122/1.549724
[14] Koeller, R. C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech.51, 299-307 (1984). · Zbl 0544.73052 · doi:10.1115/1.3167616
[15] Koeller, R. C.: Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics. Acta Mech.58, 251-264 (1986). · Zbl 0578.73040 · doi:10.1007/BF01176603
[16] Zelenev, V. M., Meshkov, S. I., Rossikhin, Yu. A.: Damped vibrations of hereditary-elastic systems with weakly singular kernels. J. Appl. Mech. Techn. Phys.11, 290-293 (1972). · doi:10.1007/BF00908110
[17] Darinsky, B. M., Meshkov, S. I.: Singular kernels of heredity and relaxation and retardation spectra. Izv. AN SSSR. Mekh. Tverdogo Tela3, 134-140 (1969) [in Russian].
[18] Meshkov, S. I.: Viscoelastic properties of metals. Moscow: Metallurgija 1974 [in Russian].
[19] Cole, K. S., Cole, R. H.: Dispersion and absorption in dielectrics. J. Chem. Phys.9, 341-351 (1941). · doi:10.1063/1.1750906
[20] Meshkov, S. I., Pachevskaya, G. N., Postnikov, V. S., Rossikhin, Yu. A.: Integral representation of ? ? and their application to problems in linear viscoelasticity. Int. J. Eng. Sci.9, 387-398 (1971). · Zbl 0219.73043 · doi:10.1016/0020-7225(71)90059-0
[21] Meshkov, S. I., Postnikov, V. S., Shermergor, T. D.: Temperature dependence of internal friction of a standard linear solid under intensive damping. Izv. AN SSSR. Mekh. Mashin.3, 90-95 (1964) [in Russian].
[22] Meshkov, S. I., Shermergor, T. D.: About temperature dependence of damping coefficients. Izv. AN SSSR. Mekhanika5, 103-106 (1965) [in Russian].