×

zbMATH — the first resource for mathematics

Nonconforming finite element approximation of crystalline microstructure. (English) Zbl 0901.73076
Summary: We consider a class of nonconforming finite element approximations of a simply laminated microstructure which minimizes the nonconvex variational problem for the deformation of martensitic crystals which can undergo either an orthorhombic to monoclinic (double well) or a cubic to tetragonal (triple well) transformation. We first establish a series of error bounds in terms of elastic energies for the \(L^2\) approximation of derivatives of the deformation in the direction tangential to parallel layers of the laminate, for the \(L^2\) approximation of the deformation, for the weak approximation of the deformation gradient, for the approximation of volume fractions of deformation gradients, and for the approximation of nonlinear integrals of the deformation gradient. We then use these bounds to give corresponding convergence rates for quasi-optimal finite element approximations.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74A60 Micromechanical theories
74M25 Micromechanics of solids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74A15 Thermodynamics in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] Todd Arbogast and Zhangxin Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp. 64 (1995), no. 211, 943 – 972. · Zbl 0829.65127
[3] J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), no. 1, 13 – 52. · Zbl 0629.49020 · doi:10.1007/BF00281246 · doi.org
[4] -, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Phil. Trans. R. Soc. Lond. A 338 (1992), 389-450. · Zbl 0758.73009
[5] Carsten Carstensen and Petr Plecháč, Numerical solution of the scalar double-well problem allowing microstructure, Math. Comp. 66 (1997), no. 219, 997 – 1026. · Zbl 0870.65055
[6] M. Chipot, Numerical analysis of oscillations in nonconvex problems, Numer. Math. 59 (1991), no. 8, 747 – 767. · Zbl 0712.65063 · doi:10.1007/BF01385808 · doi.org
[7] Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells, SIAM J. Numer. Anal. 29 (1992), no. 4, 1002 – 1019. · Zbl 0763.65049 · doi:10.1137/0729061 · doi.org
[8] M. Chipot, C. Collins, and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems, Numer. Math. 70 (1995), no. 3, 259 – 282. · Zbl 0824.65045 · doi:10.1007/s002110050119 · doi.org
[9] Michel Chipot and David Kinderlehrer, Equilibrium configurations of crystals, Arch. Rational Mech. Anal. 103 (1988), no. 3, 237 – 277. · Zbl 0673.73012 · doi:10.1007/BF00251759 · doi.org
[10] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[11] Charles Collins, Computation of twinning, Microstructure and phase transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 39 – 50. · Zbl 0797.73049 · doi:10.1007/978-1-4613-8360-4_3 · doi.org
[12] -, Convergence of a reduced integration method for computing microstructures, SIAM J. Numer. Anal. 35 (1998) (to appear). · Zbl 0924.73273
[13] Charles Collins, David Kinderlehrer, and Mitchell Luskin, Numerical approximation of the solution of a variational problem with a double well potential, SIAM J. Numer. Anal. 28 (1991), no. 2, 321 – 332. · Zbl 0725.65067 · doi:10.1137/0728018 · doi.org
[14] Charles Collins and Mitchell Luskin, The computation of the austenitic-martensitic phase transition, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 34 – 50. · Zbl 0991.80502 · doi:10.1007/BFb0024934 · doi.org
[15] -, Numerical modeling of the microstructure of crystals with symmetry-related variants, Proceedings of the US-Japan Workshop on Smart/Intelligent Materials and Systems (Lancaster, Pennsylvania) , Technomic Publishing Co., 1990, pp. 309-318.
[16] Charles Collins and Mitchell Luskin, Optimal-order error estimates for the finite element approximation of the solution of a nonconvex variational problem, Math. Comp. 57 (1991), no. 196, 621 – 637. · Zbl 0735.65042
[17] Charles Collins, Mitchell Luskin, and James Riordan, Computational images of crystalline microstructure, Computing Optimal Geometries , Amer. Math. Soc., 1991, AMS Special Lectures in Mathematics and AMS Videotape Library, pp. 16-18. · Zbl 0797.73048
[18] Charles Collins, Mitchell Luskin, and James Riordan, Computational results for a two-dimensional model of crystalline microstructure, Microstructure and phase transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 51 – 56. · Zbl 0797.73048 · doi:10.1007/978-1-4613-8360-4_4 · doi.org
[19] Jerald Ericksen, Constitutive theory for some constrained elastic crystals, Int. J. Solids and Structures 22 (1986), 951-964. · Zbl 0595.73001
[20] Donald A. French, On the convergence of finite-element approximations of a relaxed variational problem, SIAM J. Numer. Anal. 27 (1990), no. 2, 419 – 436. · Zbl 0696.65070 · doi:10.1137/0727025 · doi.org
[21] Pierre-Alain Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions, SIAM J. Numer. Anal. 31 (1994), no. 1, 111 – 127. · Zbl 0797.65052 · doi:10.1137/0731006 · doi.org
[22] P.-A. Gremaud, Numerical optimization and quasiconvexity, European J. Appl. Math. 6 (1995), no. 1, 69 – 82. · Zbl 0824.65043 · doi:10.1017/S0956792500001674 · doi.org
[23] Richard James and David Kinderlehrer, Theory of diffusionless phase transitions, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 51 – 84. · Zbl 0991.74504 · doi:10.1007/BFb0024935 · doi.org
[24] Petr Klouček, Bo Li, and Mitchell Luskin, Analysis of a class of nonconforming finite elements for crystalline microstructures, Math. Comp. 65 (1996), no. 215, 1111 – 1135. · Zbl 0903.65081
[25] P. Klouček and M. Luskin, The computation of the dynamics of the martensitic transformation, Contin. Mech. Thermodyn. 6 (1994), no. 3, 209 – 240. · Zbl 0825.73047 · doi:10.1007/BF01135254 · doi.org
[26] R. V. Kohn, The relaxation of a double-well energy, Contin. Mech. Thermodyn. 3 (1991), no. 3, 193 – 236. · Zbl 0825.73029 · doi:10.1007/BF01135336 · doi.org
[27] Bo Li, Analysis and computation of martensitic microstructure, Ph.D. thesis, University of Minnesota, 1996.
[28] Bo Li and Mitchell Luskin, Finite element approximation of a laminate with varying volume fraction, Tech. Report 1471, IMA, 1997, manuscript. · Zbl 0928.74012
[29] -, Finite element analysis of microstructure for the cubic to tetragonal transformation, SIAM J. Numer. Anal. 35 (1998) (to appear). · Zbl 0919.49020
[30] M. Luskin, Numerical analysis of microstructure for crystals with nonconvex energy density, Progress in partial differential equations: the Metz surveys, Pitman Res. Notes Math. Ser., vol. 249, Longman Sci. Tech., Harlow, 1991, pp. 156 – 165. · Zbl 0784.65061
[31] -, On the computation of crystalline microstructure, Acta Numerica 5 (1996), 191-258. · Zbl 0867.65033
[32] -, Approximation of a laminated microstructure for a rotationally invariant, double well energy density, Numer. Math. 75 (1996), 205-221. CMP 97:04
[33] Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics, SIAM J. Numer. Anal. 29 (1992), no. 2, 320 – 331. · Zbl 0760.65113 · doi:10.1137/0729021 · doi.org
[34] Ling Ma and Noel J. Walkington, On algorithms for nonconvex optimization in the calculus of variations, SIAM J. Numer. Anal. 32 (1995), no. 3, 900 – 923. · Zbl 0828.65072 · doi:10.1137/0732042 · doi.org
[35] R. A. Nicolaides and Noel J. Walkington, Strong convergence of numerical solutions to degenerate variational problems, Math. Comp. 64 (1995), no. 209, 117 – 127. · Zbl 0821.65040
[36] Pablo Pedregal, Numerical approximation of parametrized measures, Numer. Funct. Anal. Optim. 16 (1995), no. 7-8, 1049 – 1066. · Zbl 0848.65049 · doi:10.1080/01630569508816659 · doi.org
[37] -, On the numerical analysis of non-convex variational problems, Numer. Math. 74 (1996), 325-336. CMP 97:01
[38] J. Stoer and R. Bulirsch, Introduction to numerical analysis, 2nd ed., Texts in Applied Mathematics, vol. 12, Springer-Verlag, New York, 1993. Translated from the German by R. Bartels, W. Gautschi and C. Witzgall. · Zbl 0771.65002
[39] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Differential Equations 8 (1992), no. 2, 97 – 111. · Zbl 0742.76051 · doi:10.1002/num.1690080202 · doi.org
[40] Tomás Roubícek, A note about relaxation of vectorial variational problems, Calculus of variations, applications and computations , Longman, 1995, Pitman research notes in mathematical sciences, vol. 326, pp. 208-214. CMP 97:04
[41] -, Numerical approximation of relaxed variational problems, J. Convex Analysis 3 (1996), 329-347. CMP 97:12
[42] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. · Zbl 0925.00005
[43] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. · Zbl 0356.65096
[44] J. Wloka, Partial differential equations, Cambridge University Press, Cambridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas. · Zbl 0623.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.