zbMATH — the first resource for mathematics

Linearization by generalized input–output injection. (English) Zbl 0901.93013
Summary: The problem under interest is the linearization of nonlinear MIMO systems by generalized input-output injection in order to design observers with linear error dynamics. The method is based on the study of the structure of the input-output differential equations; thus, the problem is solved as a realization problem. In this note, one considers the linearization under two kinds of input-output injection. In the first case, the transformation depends on the output and time derivatives of the input, whereas in the second case, derivatives of both the input and the output are considered. Necessary and sufficient conditions are obtained which generalize the ones on standard input-output injection linearization.

93B18 Linearizations
93B17 Transformations
93B29 Differential-geometric methods in systems theory (MSC2000)
93C35 Multivariable systems, multidimensional control systems
93B07 Observability
Full Text: DOI
[1] Bestle, D.; Zeitz, M., Canonical form observer for nonlinear time-variable systems, Internat. J. control, 38, 419-431, (1983) · Zbl 0521.93012
[2] Birk, J.; Zeitz, M., Extended luenberger observer for nonlinear multivariable systems, Internat. J. control, 47, 1823-1836, (1988) · Zbl 0648.93022
[3] Chiasson, J.N.; Novotnak, R.T., Nonlinear speed observer for the PM stepper motor, IEEE trans. automat. control, 38, 1584-1588, (1993)
[4] Chiasson, J.N., Nonlinear differential-geometric techniques for control of a series DC motor, IEEE trans. control system technol., 2, 35-42, (1994)
[5] Conte, G.; Moog, C.H.; Perdon, A.M., Un théorème sur la représentation entrée-sortie d’un système non linéaire, C.R. acad. sci., Paris, 307, 363-366, (1988) · Zbl 0649.93031
[6] Diop, S., Elimination in control theory, Math. control signals systems, 4, 17-32, (1991) · Zbl 0727.93025
[7] Diop, S.; Fliess, M., On nonlinear observability, (), 152-157
[8] Diop, S.; Grizzle, J.W.; Moraal, P.E.; Stefanopoulou, A., Interpolation and numerical differentiation for observer design, (), 1329-1333
[9] Fliess, M., Generalized controller canonical forms for linear and nonlinear dynamics, IEEE trans. automat. control, 35, 994-1001, (1990) · Zbl 0724.93010
[10] Glumineau, A.; Moog, C.H.; Plestan, F., New algebro-geometric conditions for the linearization by input-output injection, IEEE trans. automat. control, 41, 598-603, (1996) · Zbl 0851.93018
[11] Glumineau, A.; Plestan, F.; Moog, C.H., Symbolic nonlinear analysis and control package: analysis, control and observers design, (), 30-32
[12] Keller, H., Nonlinear observer design by transformation into a generalized observer canonical form, Internat. J. control, 46, 1915-1930, (1987) · Zbl 0634.93012
[13] Krener, A.J.; Isidori, A., Linearization by output injection and nonlinear observers, Systems control lett., 3, 47-52, (1983) · Zbl 0524.93030
[14] Krener, A.J.; Respondek, W., Nonlinear observers with linearizable error dynamics, SIAM J. control optim., 23, 197-216, (1985) · Zbl 0569.93035
[15] Luenberger, D.G., Observing the state of a linear system, IEEE trans. mil. electron., 6, 74-80, (1964)
[16] Luenberger, D.G., An introduction to observers, IEEE trans. automat. control, 16, 596-602, (1971)
[17] Marino, R.; Tomei, P., Dynamic output feedback linearization and global stabilisation, Systems control lett., 17, 115-121, (1991) · Zbl 0747.93069
[18] Phelps, A.R., On constructing nonlinear observers, SIAM J. control optim., 29, 516-534, (1991) · Zbl 0738.93032
[19] Plestan, F.; Cherki, B., An obserser for a one flexible joint robot by an algebraic method, (), 41-46
[20] Plestan, F.; Glumineau, A.; Moog, C.H., Algebraic conditions for linearization by input-output injection, (), 161-166 · Zbl 0851.93018
[21] Plestan, F., A new approach for the linearization of MIMO systems by input-output injection, (), 999-1000
[22] Proychev, T.Ph.; Mishkov, R.L., Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input, Automatica, 29, 495-498, (1993) · Zbl 0772.93017
[23] Van der Schaft, A.J., Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outouts, Systems control lett., 12, 151-160, (1989) · Zbl 0669.93011
[24] Williamson, D., Observation of bilinear systems with application to biological systems, Automatica, 13, 243-254, (1977) · Zbl 0351.93008
[25] Xia, X.H.; Gao, W.B., Nonlinear observer design by observer error linearization, SIAM J. control optim., 1, 199-216, (1989) · Zbl 0667.93014
[26] Zeitz, M., The extended luenberger observer for nonlinear systems, Systems control lett., 9, 149-156, (1987) · Zbl 0624.93012
[27] Zheng, Y.F.; Cao, L., Reduced inverse for controlled systems, Math. control signals systems, 6, 363-379, (1993) · Zbl 0836.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.