×

Minus class groups of the fields of the \(l\)-th roots of unity. (English) Zbl 0902.11043

Let \(K\) be a CM-field, let \(\iota\) denote complex conjugation, and let \(K^+\) be the fixed field of \(\iota\). There are two different notions of minus class groups in the literature: the group \(\text{Cl}^-(K)\), defined as the kernel of the norm map \(N: \text{Cl}(K) \rightarrow \text{Cl}(K^+)\), and the quotient \(\text{Cl}^*(K)\) of \(\text{Cl}(K)\) by the image of \(\text{Cl}(K^+)\) under the transfer of ideal classes. In the main part of this paper, the author studies the field \(K\) of the \(l\)-th roots of unity for odd primes \(l\); here the two notions coincide.
Let \(G\) denote the Galois group of \(K/\mathbb{Q}\), and let \(\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p\) be the Prüfer ring. In Theorem I, the author realizes \(\text{Cl}^*(K)\) as the cokernel of an injection \(\Theta: L \rightarrow L\), where \(L\) is a free \(\widehat{\mathbb{Z}}[G]/(1+\iota)\)-module of finite rank. In Theorem II, he shows that \(L\) may be taken to be of rank \(1\) for all \(l \leq 509\), and that \(\Theta\) can be identified with a modified Stickelberger element. In particular, \(\text{Cl}^*(K)\) is isomorphic to \(\widehat{\mathbb{Z}}[G]/(1+\iota, \Theta)\) as a \(\widehat{\mathbb{Z}}[G]/(1+\iota)\)-module.
The proof of Theorem I combines deep results from Iwasawa theory, notably an extension due to D. R. Solomon [Ann. Inst. Fourier 40, No. 3, 467-492 (1990; Zbl 0694.12004)] of the main conjecture by Mazur and Wiles, plus corresponding results of C. Greither [Ann. Inst. Fourier 42, No. 3, 449-500 (1991; Zbl 0757.11039)] to cover the \(2\)-part, not to mention local and global class field theory. For studying the case \(p = 2\), the author uses his cohomological approach from [J. Pure Appl. Algebra 53, 125-137 (1988; Zbl 0651.12004)]. Here it becomes clear why he prefers \(\text{Cl}^*(K)\) to \(\text{Cl}^-(K)\): it turns out that the cohomology of \(\text{Cl}^*(K)\) behaves much more nicely than that of \(\text{Cl}^-(K)\).
For a proof of Theorem II, one needs the complete factorization of the relative class numbers for primes \(l \leq 509\), and these factorizations are given in an Appendix, including information about the contributions coming from subfields. Other tables give the structure of \(\text{Cl}^*(K)\) as an abelian group for every \(l \leq 509\).
The author’s Theorem III is much more elementary and gives a sufficient criterion for \(\text{Cl}_p^*(K)\) to be cyclic. Related results have been published by K. Tateyama [Proc. Japan Acad., Ser. A 58, 333-335 (1982; Zbl 0509.12005)] and F. Lemmermeyer [Acta Arith. 84, 59-70 (1998)].

MSC:

11R18 Cyclotomic extensions
11R29 Class numbers, class groups, discriminants
11R34 Galois cohomology
11-04 Software, source code, etc. for problems pertaining to number theory
11R23 Iwasawa theory
11B68 Bernoulli and Euler numbers and polynomials
Full Text: DOI

References:

[1] Bourbaki, N.: Éléments de Mathématique, Algèbre, Hermann, Paris 1970.
[2] Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967.
[3] Cornacchia, P.: Anderson’s module and ideal class groups of abelian fields, J. Number Theory, to appear. · Zbl 0888.11045
[4] Cornelius Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449 – 499 (English, with English and French summaries). · Zbl 0729.11053
[5] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin 1952. · Zbl 0063.01966
[6] Kenkichi Iwasawa, A note on ideal class groups, Nagoya Math. J. 27 (1966), 239 – 247. · Zbl 0139.28104
[7] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435 – 483. · Zbl 0742.14017
[8] Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin-New York, 1975. Volume I: Contributions to number theory; Edited and with an introduction by André Weil. Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin-New York, 1975. Volume II: Function theory, geometry and miscellaneous; Edited and with a foreword by André Weil.
[9] Kummer, E.E.: Bestimmung der Anzahl nicht äquivalenter Classen für die aus \(\lambda \)ten Wurzeln der Einheit gebildeten complexen Zahlen und die idealen Factoren derselben, J. für die reine und angewandte Math. 40, (1850), 93-116. (Coll.Papers 299-322) · ERAM 040.1088cj
[10] Kummer, E.E.: Mémoire sur la théorie des nombres complexes composés de racines de l’unité et de nombres entiers, J. de math. pures et appl. 16, (1851), 377-498. (Coll.Papers 363-484)
[11] Kummer, E.E.: Über die Irregularität von Determinanten, Monatsberichte der Kön. Preuß. Ak. der Wiss. zu Berlin, (1853), 194-200. (Coll.Papers 539-545)
[12] Kummer, E.E.: Über die aus 31sten Wurzeln der Einheit gebildeten complexen Zahlen, Monatsberichte der Kön. Preuß . Ak. der Wiss. zu Berlin, (1870), 755-766. (Coll.Papers 907-918)
[13] Serge Lang, Cyclotomic fields, Springer-Verlag, New York-Heidelberg, 1978. Graduate Texts in Mathematics, Vol. 59. · Zbl 0395.12005
[14] D. H. Lehmer, Prime factors of cyclotomic class numbers, Math. Comp. 31 (1977), no. 138, 599 – 607. · Zbl 0357.12006
[15] D. H. Lehmer and J. M. Masley, Table of the cyclotomic class numbers \?*(\?) and their factors for 200<\?<521, Math. Comp. 32 (1978), no. 142, 577 – 582. , https://doi.org/10.1090/S0025-5718-1978-0498484-2 D. H. Lehmer and J. M. Masley, Addendum: ”Table of the cyclotomic class numbers \?*(\?) and their factors for 200<\?<521” (Math. Comp. 32 (1978), no. 142, 577 – 582), Math. Comp. 32 (1978), no. 142, loose microfiche suppl. · Zbl 0382.12003 · doi:10.2307/2006166
[16] B. Mazur and A. Wiles, Class fields of abelian extensions of \?, Invent. Math. 76 (1984), no. 2, 179 – 330. · Zbl 0545.12005 · doi:10.1007/BF01388599
[17] Bernadette Perrin-Riou, Travaux de Kolyvagin et Rubin, Astérisque 189-190 (1990), Exp. No. 717, 69 – 106 (French). Séminaire Bourbaki, Vol. 1989/90. · Zbl 0735.14017
[18] Karl Rubin, Kolyvagin’s system of Gauss sums, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 309 – 324. · Zbl 0727.11044
[19] René Schoof, Cohomology of class groups of cyclotomic fields: an application to Morse-Smale diffeomorphisms, J. Pure Appl. Algebra 53 (1988), no. 1-2, 125 – 137. · Zbl 0651.12004 · doi:10.1016/0022-4049(88)90016-3
[20] René Schoof, The structure of the minus class groups of abelian number fields, Séminaire de Théorie des Nombres, Paris 1988 – 1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 185 – 204.
[21] Schoof, R.: Class numbers of \({\hbox {\mathbf Q}}({\hbox {\mathrm cos}}(2\pi /p))\), in preparation.
[22] David Solomon, On the classgroups of imaginary abelian fields, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 3, 467 – 492 (English, with French summary). · Zbl 0694.12004
[23] F. J. van der Linden, Class number computations of real abelian number fields, Math. Comp. 39 (1982), no. 160, 693 – 707. · Zbl 0505.12010
[24] Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. · Zbl 0484.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.