zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence results for the square root of the Poisson kernel. (English) Zbl 0902.42009
In the disk, we prove that integrals of boundary functions against the square root of the Poisson kernel converge in regions which we call $L^p$ weakly tangential. If $p>1$ these regions are strictly larger than the weakly tangential regions used by Sjögren. We also investigate how sharp these results are. In the bidisk, we prove that we have convergence in the product region $A\times B$, where $A$ is a nontangential cone, and $B$ is a weakly tangential region. In this case, the kernel will be a tensor product of powers of Poisson kernels, with the exponent larger than 1/2 in the first variable, and the exponent equal to 1/2 in the second variable.
Reviewer: Jan-Olav Rönning (Skövde)

42B25Maximal functions, Littlewood-Paley theory
Full Text: EuDML