Agrachev, A.; Bonnard, B.; Chyba, M.; Kupka, I. Sub-Riemannian sphere in Martinet flat case. (English) Zbl 0902.53033 ESAIM, Control Optim. Calc. Var. 2, 377-448 (1997). The authors study the sub-Riemannian geometry \((\mathbb{R}^3, D,g)\), where \(D: y^2 dx=2dz\) is the Martinet distribution and \(g\) is an analytic Riemannian metric on \(D \). The metric \(g\) can be reduced to the flat case or to a one-parameter deformation of the flat case. In this context, the authors discover a parametrization of geodesics using elliptic integrals and derive the exponential map, the wave front, the conjugate and cut loci, the sub-Riemannian sphere, etc. An appendix contains numerical and graphical results concerning the conjugate locus and the sub-Riemannian sphere. Reviewer: C.Udrişte (Bucureşti) Cited in 5 ReviewsCited in 41 Documents MSC: 53C22 Geodesics in global differential geometry 49L99 Hamilton-Jacobi theories 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) Keywords:sub-Riemannian geometry; Martinet distribution; cut locus; conjugate loci × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] A. Agrachev, A. V. Sarychev: Strong minimality of abnormal geodesics for 2-distributions, Journal of Dynamical and control Systems, 2, 1995, 139-176. Zbl0951.53029 MR1333769 · Zbl 0951.53029 · doi:10.1007/BF02254637 [2] A. Agrachev: Exponential mappings for contact sub-Riemannian structures, Journal of dynamical and Control Systems, 2, 1996, 321-358. Zbl0941.53022 MR1403262 · Zbl 0941.53022 · doi:10.1007/BF02269423 [3] A. Agrachev: Any smooth simple H1-local length minimizer in the Carnot-Caratheodory space is a C0-local minimizer, Preprint of Laboratoire de Topologie, Dijon, 1996. [4] V. I. Arnold: Méthodes mathématiques pour la mécanique classique, Éditions MIR, Moscou, 1976. Zbl0385.70001 MR474391 · Zbl 0385.70001 [5] G.A. Bliss: Lectures on the calculus of variations, The University of Chicago Press, 1946. Zbl0063.00459 MR17881 · Zbl 0063.00459 [6] B. Bonnard: Feedback equivalence for nonlinear systems and the time optimal control problem, SIAM J. on Control and Opt., 29, 1991, 1300-1321. Zbl0744.93033 MR1132184 · Zbl 0744.93033 · doi:10.1137/0329067 [7] B. Bonnard, M. Chyba: Exponential mapping, sphere and waves front in SR-geometry: the generic integrable Martinet case, Preprint of Laboratoire de Topologie, Dijon, 1997. [8] B. Bonnard, M. Chyba, H. Heutte: Contrôle optimal géométrique appliqué, Preprint of Laboratoire de Topologie, Dijon, 1995. [9] B. Bonnard, M. Chyba, I. Kupka: Non-integrable geodesics in SR Martinet geometry, in Proceedings AMS conference, Boulder, 1997. Zbl0963.53015 · Zbl 0963.53015 [10] B. Bonnard, M. Chyba, E. Trélat: Sub-Riemannian geometry: one parameter deformation of the Martinet flat case, to appear in Journal of Dynamical and Control Systems. Zbl0967.53020 MR1605346 · Zbl 0967.53020 [11] R. W. Brockett: Control theory and singular Riemannian geometry, in New directions in applied Math., Springer-Verlag, New-York, 1981. Zbl0483.49035 MR661282 · Zbl 0483.49035 [12] E. Cartan: Leçons sur la géométrie des espaces de Riemann, Ed. J. Gabay, Paris, 1988. Zbl0060.38101 MR1191392 · Zbl 0060.38101 [13] H. Davis: Introduction to non linear differential and integral equation, Dover, New-York, 1962. Zbl0106.28904 · Zbl 0106.28904 [14] J. Dieudonné: Calcul Infinitésimal, Hermann, Paris, 1980. Zbl0497.26004 MR226971 · Zbl 0497.26004 [15] M. Do Carmo: Riemannian geometry, Birkhauser, Boston, 1992. Zbl0752.53001 MR1138207 · Zbl 0752.53001 [16] L. V .D. Dries, A. Macintyre, D. Marker: The elementary theory of restricted analytic fields with exponentiation, Annals of Mathematics, 140, 1994, 183-205. Zbl0837.12006 MR1289495 · Zbl 0837.12006 · doi:10.2307/2118545 [17] C. El Alaoui, J. P. Gauthier, I. Kupka: Small sub-Riemannian balls on R3, Journal of dynamical and Control Systems, 2, 1996, 359-421. Zbl0941.53024 MR1403263 · Zbl 0941.53024 · doi:10.1007/BF02269424 [18] R. Gérard, H. Tahora: Singular nonlinear PDE, Vieweg-Verlag, Germany, 1996. [19] J. Gregory: Quadratic form theory and differential equation, Academic Press, New-York, 1980. Zbl0468.15015 MR599362 · Zbl 0468.15015 [20] U. Hamenstadt: Some regularity theorem for Carnot-Caratheodory metries, J. Differential geometry, 32, 1991, 819-850. Zbl0687.53041 MR1078163 · Zbl 0687.53041 [21] F. John: Partial differential equations, Springer-Verlag, New-York, 1971. Zbl0209.40001 · Zbl 0209.40001 [22] A. G. Khovanskii: Fewnomials, Trans. AMS, 88, 1991. Zbl0728.12002 MR1108621 · Zbl 0728.12002 [23] I. Kupka: Abnormal extremals, Preprint, 1992. [24] I. Kupka: Géométrie sous-Riemannienne, in Séminaire Bourbaki, 1996. MR1472545 [25] D.F. Lawden: Elliptic functions and applications, Springer-Verlag, New-York, 1989. Zbl0689.33001 MR1007595 · Zbl 0689.33001 [26] E. B. Lee, L. Markus: Foundations of optimal control theory, John Wiley and Sons, New-York, 1967. Zbl0159.13201 MR220537 · Zbl 0159.13201 [27] J. M. Lion, J. P. Rolin: Théorèmes de préparation pour les fonctions logarithmo-exponentielles, Annales de l’Institut Fourier, 47, 1997, 859-884. Zbl0873.32004 MR1465789 · Zbl 0873.32004 · doi:10.5802/aif.1583 [28] W. S. Liu and H. J. Susmann: Shortest paths for sub-Riemannian metries of rank two distributions, to appear in Trans. AMS. Zbl0843.53038 · Zbl 0843.53038 [29] S. Lojasiewicz, H. J. Sussmann: Some examples of reachable sets and optimal cost functions that fail to be subanalytic, SIAM J. Control and Optimization, 23, 1985, 584-598. Zbl0569.49029 MR791889 · Zbl 0569.49029 · doi:10.1137/0323037 [30] A. E. H. Love: A treatise of the mathematical theory of elasticity, Dover, 1944. Zbl0063.03651 MR10851 JFM47.0750.09 · Zbl 0063.03651 [31] S. B. Myers: Connections between differential geometry and topology, Duke Math. J., 1, 1935, 376-391. MR1545884 JFM61.0787.02 · Zbl 0012.27502 · doi:10.1215/S0012-7094-35-00126-0 [32] L. Pontriaguineet al.: Théorie mathématique des processus optimaux, Éditions MIR, Moscou, 1974. Zbl0289.49002 MR358482 · Zbl 0289.49002 [33] W. Respondek, M. Zhitomirskii: Feedback classification of nonlinear control Systems on 3-manifolds, to appear in Math. Control Systems and Signals. Zbl0925.93367 MR1403291 · Zbl 0925.93367 [34] M. Spivak: Differential geometry, Publish on Perish, Inc., Berkeley, 1979. [35] R. Strichartz: Sub-Riemannian geometry, J. Differential geometry, 24, 1986, 221-263. Zbl0609.53021 MR862049 · Zbl 0609.53021 [36] J. Tannery, J. Molk: Eléments de la théorie des fonctions elliptiques, Tomes I à IV, Gauthier-Villars, Paris, 1896. JFM27.0335.01 · JFM 27.0335.01 [37] A. Weinstein: The cut-locus and conjugate-locus of a Riemannian manifold, Annals of Maths, 87, 1968, 29-41. Zbl0159.23902 MR221434 · Zbl 0159.23902 · doi:10.2307/1970592 [38] E. T. Whittaker, G. N. Watson: A course of modern analysis, Cambridge U. Press, New York, 1927. MR1424469 JFM53.0180.04 · JFM 53.0180.04 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.