zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic behaviour of nonautonomous difference inclusions. (English) Zbl 0902.93043
Summary: Nonautonomous difference inclusions are formulated as difference inclusion cocycles, which generalize set-valued semigroups corresponding to autonomous difference inclusions, and the existence of a difference inclusion cocycle attractor is established under the assumption of upper semi-continuity of the cocycle mappings if the difference inclusion cocycle has an absorbing set. Several illustrative examples are provided.

93C99Control systems, guided systems
34A60Differential inclusions
93C55Discrete-time control systems
Full Text: DOI
[1] A.V. Babin, M.I. Vishik, Maximal attractors of semigroups corresponding to evolution equation, Math USSR-Sb. 54 (1986) No. 2. · Zbl 0611.35033
[2] Cheban, D.N., Fakhih, D.S. The Global Attractors of Dynamical Systems without Uniqueness, Sigma, Kishinev, 1994.
[3] Dontchev, A. L.; Lempio, F.: Difference methods for differential inclusions: a survey. SIAM rev. 34, 263-294 (1992) · Zbl 0757.34018
[4] Flandoli, F.; Schmalfuß, B.: Random attractors for the 3D stochastic Navier--Stokes equation with multiplicative white noise. Stochastics and stochastics rep. 59, 21-45 (1996)
[5] Hale, J. Asymptotic Behavior of Dissipative Dynamical Systems, Amer. Math. Soc. Providence, RI, 1988. · Zbl 0642.58013
[6] Hui, S.; .Zak, S. H.: On the Lyapunov stability of discrete-time processes modeled by difference inclusions. Systems control lett. 10, 207-209 (1988) · Zbl 0643.93049
[7] Kloeden, P. E.; Schmalfuß, B.: Lyapunov functions and attractors under variable time-step discretization. Discrete continuous dyn. Systems 2, 163-172 (1996) · Zbl 0949.34042
[8] P.E. Kloeden Schmalfuß Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms 14 (1997) 141--152.
[9] Molchanov, A. P.; Pyatnitskiy, Ye.S.: Criteria for the asymp- totic stability of differential and difference inclusions encountered in control systems. Systems control lett. 13, 59-64 (1989)
[10] B. Schmalfuß, The stochastic attractor of the stochastic Lorenz system, in: N. Koksch, V. Reitmann, T. Riedrich (Eds.), Nonlinear Dynamics: Attractor Approximation and Global Behaviour, Proc. ISAM 92, TU Dresden, 1992, pp. 185-192.
[11] G.P. Szegö, G. Treccani, Semigruppi di Trasformazioni Multivoche, Lecture Notes in Mathematics, vol. 101, Springer, Berlin, 1969.