Bifurcation of periodic solutions in differential inclusions. (English) Zbl 0903.34036

A general system of inclusions \[ \dot x(t) \in f(x(t))+\sum_{j=1}^k \mu_j f_j(x(t), \mu,t), \] \(x: \mathbb{R} \to \mathbb{R}^n\) is considered, where \(f, f_j\) are compact- and convex-valued upper semicontinuous mappings and \(\mu = (\mu_1, \dots, \mu_k)\) is a parameter. Assuming that the structure of the set of \(1\)-periodic solutions for \(\mu = 0\) is known, the author applies topological degree theory for multivalued mappings to give sufficient conditions for the existence of bifurcating \(1\)-periodic solutions for \(\mu \) close to \(0\). It is shown that systems involving both static and dynamic dry friction terms belong to this class.


34C25 Periodic solutions to ordinary differential equations
34A60 Ordinary differential inclusions
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI EuDML


[1] A.A. Andronow, A.A. Witt, S.E. Chaikin: Theorie der Schwingungen I. Akademie Verlag, Berlin, 1965. · Zbl 0123.40002
[2] N.V. Butenin, Y.I. Nejmark, N.A. Fufaev: An Introduction to the Theory of Nonlinear Oscillations. Nauka, Moscow, 1987. · Zbl 0651.34034
[3] C. Chicone: Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators. J. Differential Equations 112 (1994), 407-447. · Zbl 0807.34052
[4] K. Deimling: Multivalued Differential Equations. W. De Gruyter, Berlin, 1992. · Zbl 0820.34009
[5] K. Deimling: Multivalued differential equations and dry friction problems. Proc. Conf. Differential & Delay Equations, Ames, Iowa 1991, A. M. Fink, R. K. Miller, W. Kliemann (eds.), World Scientific, Singapore, 1992, pp. 99-106. · Zbl 0820.34009
[6] K. Deimling, P. Szilágyi: Periodic solutions of dry friction problems. Z. angew. Math. Phys. (ZAMP) 45 (1994), 53-60. · Zbl 0873.70016
[7] K. Deimling, G. Hetzer, W. Shen: Almost periodicity enforced by Coulomb friction. Adv. Differential Equations 1 (1996), 265-281. · Zbl 0838.34016
[8] J.P. Den Hartog: Mechanische Schwingungen. 2nd, Springer-Verlag, Berlin, 1952. · Zbl 0046.17201
[9] M. Fečkan: Bifurcation from homoclinic to periodic solutions in ordinary differential equations with multivalued perturbations. J. Differential Equations 130 (1996), 415-450. · Zbl 0863.34051
[10] M. Fečkan: Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions. Proceedings Royal Soc. Edinburgh A · Zbl 0990.34038
[11] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983. · Zbl 0515.34001
[12] P. Hartman: Ordinary Differential Equations. Wiley, New York, 1964. · Zbl 0125.32102
[13] H. Kauderer: Nichtlineare Mechanik. Springer-Verlag, Berlin, 1958. · Zbl 0080.17409
[14] K. Popp, P. Stelter: Stick-slip vibrations and chaos. Philos. Trans. R. Soc. London A 332 (1990), 89-105. · Zbl 0709.70019
[15] K. Popp: Some model problems showing stick-slip motion and chaos. ASME WAM, Proc. Symp. Friction-Induced Vibration, Chatter, Squeal and Chaos, R.A. Ibrahim and A. Soom (eds.) vol. DE-49, 1992, pp. 1-12.
[16] K. Popp, N. Hinrichs, M. Oestreich: Dynamical behaviour of a friction oscillator with simultaneous self and external excitation. Sādhanā 20, 2-4 (1995), 627-654. · Zbl 1048.70503
[17] T. Pruszko: Some applications of the topological degree theory to multi-valued boundary value problems. Dissertationes Math. 229 (1984), 1-48. · Zbl 0543.34008
[18] T. Pruszko: Topological degree methods in multi-valued boundary value problems. Nonlinear Anal., Th., Meth. Appl. 5 (1981), 959-973. · Zbl 0478.34017
[19] R. Reissig: Erzwungene Schwingungen mit zäher Dämpfung und starker Gleitreibung. II. Math. Nachr. 12 (1954), 119-128. · Zbl 0058.07202
[20] R. Reissig: Über die Stabilität gedämpfter erzwungener Bewegungen mit linearer Rückstellkraft. Math. Nachr. 13 (1955), 231-245. · Zbl 0066.33503
[21] R. Rumpel: Singularly perturbed relay control systems. preprint (1996).
[22] K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.