×

Convolution operators on Kucera-type spaces for the Hankel transformation. (English) Zbl 0903.46038

This paper fits into the series of papers of the same authors on the same subject. It is a direct continuation of the paper [Appl. Anal. 52, 103-124 (1994; Zbl 0840.46020)]. The Hankel integral transformation was defined on distribution spaces by A. H. Zemianin. The space \({\mathcal H}_{\mu }\) of all smooth, complex-valued functions satisfying some conditions is endowed with the structure of Fréchet space, there is an automorphism \({\mathbf h}_{\mu }\). On its dual is defined generalized Hankel transformation as a transpose of \({\mathbf h}_{\mu }\). There is a chain of Hilbert spaces \({\mathcal H}^p_{mu}\) included in \({\mathcal H}_{\mu }\), with the property, \(\text{projlim } {\mathcal H}^p_{\mu }\) = \({\mathcal H}_{\mu }\), \(\text{indlim } {\mathcal H}^p_{\mu }\) = \({\mathcal H}_{\mu}'\). Completion of investigation of the multipliers and Hankel convolutions on these space is given.
Reviewer: J.Bureš (Praha)

MSC:

46F12 Integral transforms in distribution spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)

Citations:

Zbl 0840.46020

References:

[1] J. J. Betancor and I. Marrero: Multipliers of Hankel transformable generalized functions. Comment. Math. Univ. Carolin. 33 (1992), 389-401. · Zbl 0801.46047
[2] J. J. Betancor and I. Marrero: The Hankel convolution and the Zemanian spaces \(B_{\mu }\) and \(B^{\prime }_{\mu }\). Math. Nachr. 160 (1993), 277-298. · Zbl 0796.46023 · doi:10.1002/mana.3211600113
[3] J. J. Betancor and I. Marrero: Structure and convergence in certain spaces of distributions and the generalized Hankel convolution. Math. Japon. 38(6) (1993), 1141-1155. · Zbl 0795.46023
[4] J. J. Betancor and I. Marrero: Some properties of Hankel convolution operators. Canad. Math. Bull. 36 (1993), 398-406. · Zbl 0795.46024 · doi:10.4153/CMB-1993-054-8
[5] J. J. Betancor and I. Marrero: A Hilbert-space approach to Hankel-transformable distributions. Appl. Anal. 52 (1994), 103-124. · Zbl 0840.46020 · doi:10.1080/00036819408840228
[6] J. J. Betancor and I. Marrero: Multipliers and convolution operators on Hankel transformable Hilbert spaces. Rend. Sem. Mat. Univ. Pol. Torino 51(2) (1993), 119-137. · Zbl 0851.46018
[7] J Kucera: Convolution of temperate distributions. Publ. Math. 33 (1986), 323-327. · Zbl 0627.46046
[8] J. Kucera and K. McKennon: The topology on certain spaces of multipliers of temperate distributions. Rocky Mountain J. Math. 7 (1977), 377-383. · Zbl 0377.46024 · doi:10.1216/RMJ-1977-7-2-377
[9] J. Kucera and K. McKennon: Continuity of multiplication of distributions. Internat. J. Math. Sci. 4 (1981), 819-822. · Zbl 0468.46028 · doi:10.1155/S016117128100063X
[10] I. Marrero and J. J. Betancor: Hankel convolution of generalized functions. Rend. Mat. Appl. 15 (1995), 351-380. · Zbl 0833.46026
[11] K. McKennon: The multiplication functions of Kucera. Czechoslovak Math. J. 29 (1979), 169-177. · Zbl 0431.46022
[12] H. H. Schaefer: Topological Vector Spaces. Grad. Texts in Math., No. 3 (3rd printing), Springer, Berlin, 1971. · Zbl 0217.16002
[13] F. Tréves: Topological Vector Spaces, Distributions, and Kernels. Academic Press, Now York, 1967. · Zbl 0171.10402
[14] A. H. Zemanian: The Hankel transformation of certain distributions of rapid growth. SIAM J. Appl. Math. 14 (1966), 678-690. · Zbl 0154.13804 · doi:10.1137/0114056
[15] A. H. Zemanian: Generalized Integral Transformations. Interscience, New York, 1968. · Zbl 0181.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.