zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized monotone bifunctions and equilibrium problems. (English) Zbl 0903.49006
An equilibrium problem is studied in this paper which includes, e.g., the variational inequality as a special case. The existence of a solution for the equilibrium problem is derived using the quasimonotone condition. Moreover, characterizations, such as convexity and compactness, of the solution set for the equilibrium problem are also given.

49J40Variational methods including variational inequalities
Full Text: DOI
[1] Blum, E., andOettli, W.,From Optimization and Variational Inequalities to Equilibrium Problems, The Mathematics Student, Vol. 63, pp. 123--145, 1994. · Zbl 0888.49007
[2] Hadjisavvas, N., andSchaible, S.,On Strong Pseudomonotonicity and (Semi) Strict Quasimonotonicity, Journal of Optimization Theory and Applications, Vol. 79, pp. 139--155, 1993. · Zbl 0792.90068 · doi:10.1007/BF00941891
[3] Karamardian, S.,Complementarity Problems over Cones with Monotone and Pseudomonotone Maps, Journal of Optimizatio Theory and Applications, Vol 18, pp. 445--454, 1976. · Zbl 0304.49026 · doi:10.1007/BF00932654
[4] Karamardian, S., andSchaible, S.,Seven Kinds of Monotone Maps, Journal of Optimization Theory and Applications, Vol. 66, pp. 37--46, 1990. · Zbl 0679.90055 · doi:10.1007/BF00940531
[5] Schaible, S.,Generalized Monotonicity: A Survey,Proceedings of the Symposium on Generalized Convexity, Pécs, Hungary, 1992; Edited by S. Komlosi, T. Rapcsak, and S. Chaible, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin Germany, Vol. 405, pp. 229--249, 1994.
[6] Schaible, S.,Generalized Monotonicity: Concepts and Uses, Proceedings of the Meeting on Variational Inequalities and Network Equilibrium Problems, Erice, Italy, 1994; Edited by F. Giannessi and A. Maugeri, Plenum Publishing Corporation, New York, New York, pp. 289--299, 1995. · Zbl 0847.49013
[7] Bianchi, M.,Una Classe di Funzioni Monotone Generalizzate, Rivista di Matematica per le Scienze Economiche e Sociali, Vol. 16, pp. 17--32, 1993. · Zbl 0859.90110 · doi:10.1007/BF02086760
[8] Komlosi, S.,Generalized Monotomicity and Generalized Convexity, Journal of Optimization Theory and Applications, Vol. 84, pp. 361--376, 1995. · Zbl 0824.90124 · doi:10.1007/BF02192119
[9] Cottle, R. W., andYao, J. C.,Pseudomonotone Complementarity Problems in Hilbert Space, Journal of Optimization Theory and Applications, Vol. 75, pp. 281--295, 1992. · Zbl 0795.90071 · doi:10.1007/BF00941468
[10] Hadjisavvas, N., andSchaible, S.,Quasimonotone Variational Inequalities in Bannach Spaces, Journal of Optimization Theory and Applications, Vol. 90, pp. 95--111, 1996. · Zbl 0904.49005 · doi:10.1007/BF02192248
[11] Harker, P. T., andPang, J. S.,Finite-Dimensional Variational Inequalities and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms, and Applications, Mathematical Programming, Vol. 48, pp. 161--220 1990. · Zbl 0734.90098 · doi:10.1007/BF01582255
[12] Schaible, S., andYao, J. C.,On the Equivalence of Nonlinear Complementarity Problems and Least-Element Problems, Mathematical Program, Vol. 70, pp. 191--200, 1995. · Zbl 0847.90133 · doi:10.1007/BF01585936
[13] Yao, J. C.,Variational Inequalities with Generalized Monotone Operators, Mathematics of Operations Research, Vol. 19, pp. 691--705, 1994. · Zbl 0813.49010 · doi:10.1287/moor.19.3.691
[14] Yao, J. C.,Multivalued Variational Inequalities with K-Monotone Operators, Journal of Optimization Theory and Applications, Vol. 83, pp. 391--403, 1994. · Zbl 0812.47055 · doi:10.1007/BF02190064
[15] Blum, E., andOettli, W.,Variational Principle for Equilibrium Problems, 11th International Meeting on Mathematical Programming, Matrafured, Hungary, 1992.
[16] Brezis, H., Niermberg, L., andStampacchia, G.,A Remark on Fan’s Minimax Principle, Bollettino della Unione Matematica Italiana, Vol. 6, pp. 293--300, 1972.
[17] Avriel, M., Diewert, W. E., Schaible, S., andZiemba, W. T.,Introduction to Concave and Generalized Concave Functions, Generalized Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 21--50, 1981. · Zbl 0539.90087
[18] Fan, K.,A Generalization of Tychonoff’s Fixed-Point Theorem, Mathematische Annalen, Vol. 142, pp. 305--310, 1961. · Zbl 0093.36701 · doi:10.1007/BF01353421
[19] Baiocchi, C., andCapelo, A.,Disequazioni Variazionali e Quasivariazionali: Applicationi a Problemi di Frontiera Libera, Vols. 1 and 2, Pitagora Editrice, Bologna, Italy, 1978.
[20] Mosco, U.,Implicit Variational Problems and Quasivariational Inequalities, Lecture Notes in Mathematics, Springer, Berlin, Germany, Vol. 543, pp. 83--156, 1976. · Zbl 0346.49003
[21] Avriel, M., Diewert, W. E., Schaible, S., andZang, I.,Generalized Concavity, Plenum Press, New York, New York, 1988.
[22] Köthe, G.,Topological Vector Spaces, Vol. 1 Springer Verlag, Berlin, Germany, 1969. · Zbl 0179.17001