## Limit theorems for products of positive random matrices.(English)Zbl 0903.60027

Summary: Let $$S$$ be the set of $$q\times q$$ matrices with positive entries, such that each column and each row contains a strictly positive element, and denote by $$S^0$$ the subset of these matrices, all entries of which are strictly positive. Consider a random ergodic sequence $$(X_n)_{n\geq 1}$$ in $$S$$. The aim of this paper is to describe the asymptotic behavior of the random products $$X^{(n)}= X_n\cdots X_1$$, $$n\geq 1$$, under the main hypothesis $$P\left(\bigcup_{n\geq 1}[X^{(n)}\in S^0]\right)> 0$$. We first study the behavior “in direction” of row and column vectors of $$X^{(n)}$$. Then, adding a moment condition, we prove a law of large numbers for the entries and lengths of these vectors and also for the spectral radius of $$X^{(n)}$$. Under the mixing hypotheses that are usual in the case of sums of real random variables, we get a central limit theorem for the previous quantities. The variance of the Gaussian limit law is strictly positive except when $$(X^{(n)})_{n\geq 1}$$ is tight. This tightness property is fully studied when the $$X_n$$, $$n\geq 1$$, are independent.

### MSC:

 60F99 Limit theorems in probability theory 60F05 Central limit and other weak theorems

### Keywords:

central limit theorem; tightness
Full Text:

### References:

  Arnold, L., Demetrius, L. and Gundlach, V. M. (1994). Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab. 4 859-901. · Zbl 0818.15015  Bougerol, P. (1987). Tightness of products of random matrices and stability of linear stochastic systems. Ann. Probab. 15 40-74. · Zbl 0614.60008  Bougerol, P. and Lacroix, J. (1985). Products of Random Matrices with Applications to Schrödinger Operators. Birkhäuser, Boston. · Zbl 0572.60001  Bushell, P. J. (1973). Hilbert’s metric and positive contraction mappings in a Banach space. Arch. Rational Mech. Anal. 52 330-338. · Zbl 0275.46006  Cohen, J. (1986). Products of random matrices and related topics in mathematics and science-a bibliography. Contemp. Math. 50 337-358. · Zbl 0584.60020  Cohn, H., Nerman, O. and Peligrad, M. (1993). Weak ergodicity and products of random matrices. J. Theoret. Probab. 6 389-405. · Zbl 0770.60005  Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. (1982). Ergodic Theory. Springer, New York. · Zbl 0493.28007  Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statist. 85. Springer, New York. · Zbl 0790.60037  D ürr, D. and Goldstein, S. (1984). Remarks on the CLT for weakly dependent random variables. Lecture Notes in Math. 1158. Springer, New York. · Zbl 0582.60036  Durrett, R. (1991). Probability: Theory and Examples. Wadsworth and Brooks/Cole, Monterey, CA. · Zbl 0709.60002  Esseen, C. G. and Janson, S. (1985). On moment conditions for sums of independent variables and martingale differences. Stochastic Process. Appl. 19 173-182. · Zbl 0554.60050  Evstigneev, C. G. I.V. (1974). Positive matrix-valued cocycles over dynamical systems. Uspehi Mat. Nauk 29 219-226. · Zbl 0314.28015  Ferrero, P. and Schmitt, B. (1988). Produits aléatoires d’opérateurs matrices de transfert. Probab. Theory Related Fields 79 227-248. · Zbl 0633.60014  Furstenberg, H. (1963). Non-commuting random products. Trans. Amer. Math. Soc. 108 377-428. JSTOR: · Zbl 0203.19102  Furstenberg, H. and Kesten, H. (1960). Products of random matrices. Ann. Math. Statist. 31 457-469. · Zbl 0137.35501  Gordin, M. I. (1969). The central limit theorem for stationary processes. Soviet Math. Dokl 10 1174-1176. · Zbl 0212.50005  Guivarc’h, Y. and Raugi, A. (1986). Products of random matrices: convergence theorems. Contemp. Math. 50 31-54. · Zbl 0592.60015  Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. · Zbl 0462.60045  Hennion, H. (1991). Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes a coefficients positifs. Ann. Inst. H. Poincaré Probab. Statist. 27 27-59. · Zbl 0724.60009  Kesten, H. and Spitzer, F. (1984). Convergence in distribution of products of random matrices.Wahrsch. Verw. Gebiete 67 363-386. · Zbl 0535.60016  Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883-899. · Zbl 0311.60018  Kranosel’skij, M. A., Lifshits, Je. A. and Sobolev, A. V. (1980). Positive Linear SystemsThe Method of Positive Operators. Sigma Ser. Appl. Math. Heldermann, Berlin.  Ledrappier, F. (1982). Quelques propriétés des exposants caractéristiques. Ecole d’été de Saint-Flour 12. Lecture Notes in Math. 1097. Springer, Berlin. · Zbl 0578.60029  Le Page, E. (1982). Théor emes limites pour les produits de matrices aléatoires. Probability Measures on Groups. Lecture Notes in Math. 928 258-303. Springer, Berlin. · Zbl 0506.60019  Liverani, C. (1996). Central limit theorem for deterministic systems. In International Conference on Dynamical Systems, Montevideo 1995: a Tribute to Ricardo Mané. · Zbl 0871.58055  Mukherjea, A. (1987). Convergence in distribution of products of random matrices: a semigroup approach. Trans. Amer. Math. Soc. 303 395-411. JSTOR: · Zbl 0638.60007  Pellaumail, J. (1990). Graphes et algorithme de calcul de probabilités stationnaires d’un processus markovien discret. Ann. Inst. H. Poincaré Probab. Statist. 26 121-143. · Zbl 0701.60064  Peres, Y. (1992). Domain of analytic continuation for the top Lyapunov exponent. Ann. Inst. H. Poincaré Probab. Statist. 28 131-148. · Zbl 0794.58023  Raugi, A. (1983). Une démonstration du théor eme de Choquet-Deny par les martingales. Ann. Inst. H. Poincaré Statist. Probab. 19 101-109.  Seneta, E. (1981). Nonnegative Matrices and Markov Chains. Springer, New York. · Zbl 0471.60001  Volny, D. (1993). Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 41-74. · Zbl 0765.60025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.