×

Polynomial invariants of finite groups. A survey of recent developments. (English) Zbl 0904.13004

Almost two decades ago R. P. Stanley published his important survey article “Invariants of finite groups and their application to combinatorics”, Bull. Am. Math. Soc., New Ser. 1, 475-511 (1979; Zbl 0497.20002). Since that time invariant theory of finite groups has taken a central rôle in different branches of algebra, in particular in algebraic topology as follows e.g. from the author’s book [L. Smith, “Polynomial invariants of finite groups” (1995; Zbl 0864.13002)]. The main subject of the present article is a review of the recent developments with respect to a particular interest in algebraic topology. A central rôle is played – in contrast to R. P. Stanley’s article (loc. cit.) – by the modular case, i.e. where the characteristic of the ground field divides the order of the group. The present survey is divided into six chapters:
1. The transfer and the classical finiteness theorems,
2. Orbit Chern classes and finiteness theorems,
3. Noether’s bound: a forgotten problem,
4. The Dickson algebra and modular invariant theory,
5. The Steenrod algebra and modular invariant theory, and
6. All together now: the depth conjecture.
The first chapter reviews Hilbert’s finiteness results, Molien series, and Cohen-Macaulayness of rings of invariants by the transfer principle, a slight extension of the Reynolds operator to the modular case. The second chapter is devoted to orbit Chern classes, an idea how to produce invariants in the modular case, and finiteness results whenever the characteristic divides the order of the group, including E. Noether’s finiteness theorem. In the third chapter there are various observations concerning bounds on the maximal degree of generators of the ring of invariants. This is stimulated – among others – by the work of B. J. Schmid [in: Topics in invariant theory, Sémin. Algèbre P. Dubreil et M.-P. Malliavin, Paris 1989-1990, Lect. Notes Math. 1478, 35-66 (1991; Zbl 0770.20004)]. Moreover it covers recent approaches of constructive aspects for invariants. Apart from Noether’s finiteness theorem and Hilbert’s syzygy theorem ‘everything’ can go wrong in the modular case as shown by examples in chapter 4.
There are compensations that make invariant theory in the modular case interesting and exciting. The first subject is the Dickson algebra introduced in chapter 5, an algebra of universal invariants (consisting of polynomials present in all rings of invariants) and providing a universal system of parameters of the ring of invariants. Its power is demonstrated by a short proof of Noether’s finiteness theorem in the modular case. Another modular feature is the Steenrod algebra introduced in chapter 5. It was created in algebraic topology and describes a way how to organize information derived from the Frobenius morphism. It provides a method for constructing new invariants from old ones. Based on these two new features P. S. Landweber and R. E. Stong [in: Number Theory, Semin. New York 1984/85, Lect. Notes Math. 1240, 259-274 (1987; Zbl 0623.55007)] stated a conjecture about the depth of rings of invariants in the modular case. In the final chapter 6 the author describes a recent theorem by D. Bourguiba and S.Zarati [Invent. Math. 128, No. 3, 589-602 (1997; Zbl 0874.55017)] about Steenrod operations that includes the depth conjecture as a particular case.
This survey article covers the recent research about modular invariant theory of finite groups. It is a complement to the author’s encyclopedic book on the subject (loc. cit.). The article underlines the central rôle of the ring of invariants in several branches of algebra and as an interesting subject of recent research.
Reviewer: P.Schenzel (Halle)

MSC:

13A50 Actions of groups on commutative rings; invariant theory
55S10 Steenrod algebra
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. F. Adams and H. R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971), 271 – 282. · Zbl 0225.55016
[2] J. F. Adams and C. W. Wilkerson, Finite \?-spaces and algebras over the Steenrod algebra, Ann. of Math. (2) 111 (1980), no. 1, 95 – 143. , https://doi.org/10.2307/1971218 J. F. Adams and C. W. Wilkerson, A correction: ”Finite \?-spaces and algebras over the Steenrod algebra” [Ann. of Math. (2) 111 (1980), no. 1, 95 – 143; MR 81h:55006], Ann. of Math. (2) 113 (1981), no. 3, 621 – 622. · Zbl 0484.55010
[3] Alejandro Adem and R. James Milgram, Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 1994. · Zbl 0820.20060
[4] Gert Almkvist, Some formulas in invariant theory, J. Algebra 77 (1982), no. 2, 338 – 359. · Zbl 0492.20032
[5] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. · Zbl 0175.03601
[6] Stanisław Balcerzyk and Tadeusz Józefiak, Commutative Noetherian and Krull rings, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; distributed by Prentice Hall, Inc., Englewood Cliffs, NJ, 1989. Translated from the Polish by Maciej Juniewicz and Sergiusz Kowalski. · Zbl 0685.13001
[7] Stanisław Balcerzyk and Tadeusz Józefiak, Commutative rings, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; distributed by Prentice Hall, Inc., Englewood Cliffs, NJ, 1989. Dimension, multiplicity and homological methods; Translated from the Polish by Maciej Juniewicz, Sergiusz Kowalski and Marcin Kuczma. · Zbl 0685.13002
[8] G. Barbançon and M. Raïs, Sur le théorème de Hilbert différentiable pour les groupes linéaires finis (d’après E. Noether), Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 355 – 373 (1984) (French). · Zbl 0531.14008
[9] D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, Cambridge, 1993. · Zbl 0864.13001
[10] Marie-José Bertin, Anneau des invariants du groupe alterné, en caractéristique 2, Bull. Sci. Math. (2) 94 (1970), 65 – 72 (French). · Zbl 0205.06002
[11] Marie-José Bertin, Anneaux d’invariants d’anneaux de polynomes, en caractéristique \?, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A653 – A656 (French). · Zbl 0147.29503
[12] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). · Zbl 0186.33001
[13] D. Bourguiba and S. Zarati, Depth and Steenrod operations, Preprint, Univ. of Tunis II, 1995. · Zbl 0874.55017
[14] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. · Zbl 0788.13005
[15] S. R. Bullett and I. G. Macdonald, On the Adem relations, Topology 21 (1982), no. 3, 329 – 332. · Zbl 0506.55015
[16] H. E. A. Campbell, J. C. Harris, and D. L. Wehlau, On rings of invariants of non-modular Abelian groups, Preprint, Queens Univ., 1996. · Zbl 0941.13006
[17] H. E. A. Campbell and I. P. Hughes, \(2\)-Dimensional invariants of \(\operatorname {GL}(2,\mathbb {F}_p)\) and some of its subgroups over the field \(\mathbb {F}_p\), Preprint, Queens Univ., 1993.
[18] H. E. A. Campbell, I. Hughes, and R. D. Pollack, Rings of invariants and \?-Sylow subgroups, Canad. Math. Bull. 34 (1991), no. 1, 42 – 47. · Zbl 0695.14008
[19] H. E. A. Campbell, I. P. Hughes, R. J. Shank, and D. L. Wehlau, Bases for rings of coinvariants, Transform. Groups 1 (1996), 307-336. · Zbl 0877.20006
[20] H. Cartan, Quotient d’un éspace analytique par un groupe d’automorphismes, Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz (eds: R. H. Fox, D. C. Spencer and A. W. Tucker), Princeton Univ. Press, Princeton, 1957. · Zbl 0084.07202
[21] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, 1956. · Zbl 0075.24305
[22] Allan Clark and John Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425 – 434. · Zbl 0333.55002
[23] P. M. Cohen, Algebra, second ed., J. Wiley, New York, 1989.
[24] David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. An introduction to computational algebraic geometry and commutative algebra. · Zbl 0756.13017
[25] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98. · JFM 42.0136.01
[26] -, Binary modular groups and their invariants, Amer. J. Math. 33 (1911), 175-192. · JFM 42.0157.03
[27] -, On finite algebras, Nachr. Akad. Wiss. Göttingen (1905), 358-393. · JFM 36.0138.03
[28] Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, Inc., New York, 1958. · Zbl 0082.24901
[29] Leonard Eugene Dickson, The collected mathematical papers of Leonard Eugene Dickson. Vol. VI, Chelsea Publishing Co., New York, 1983. Edited by A. Adrian Albert.
[30] W. G. Dwyer and C. W. Wilkerson, Kähler differentials, the \(T\)-functor, and a theorem of Steinberg, Preprint, the Hopf archives (hopf@math.purdue.edu), 1996. · Zbl 0901.55009
[31] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. · Zbl 0819.13001
[32] D. Engelmann, Optimal, pseudooptimal and perfect homogeneous systems of parameters for rings of invariants, Preprint, Humboldt Univ., 1996.
[33] Geir Ellingsrud and Tor Skjelbred, Profondeur d’anneaux d’invariants en caractéristique \?, Compositio Math. 41 (1980), no. 2, 233 – 244 (French). · Zbl 0438.13007
[34] Jacques Dixmier, Paul Erdős, and Jean-Louis Nicolas, Sur le nombre d’invariants fondamentaux des formes binaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 8, 319 – 322 (French, with English summary). · Zbl 0642.10021
[35] Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775 – 1029. · Zbl 0124.26402
[36] M. Feshbach, The image of the trace in the ring of invariants, Preprint, Univ. Minnesota, 1981. · Zbl 0457.55010
[37] Mark Feshbach, \?-subgroups of compact Lie groups and torsion of infinite height in \?*(\?\?). II, Michigan Math. J. 29 (1982), no. 3, 299 – 306. · Zbl 0519.55014
[38] P. Fleischmann, On the ring of vector invariants for the symmetric group, Preprint, Institute for Experimental Mathematics, Essen, 1996.
[39] P. Fleischmann and W. Lempken, On generators of modular invariant rings of finite groups, Preprint, Institute for Experimental Mathematics, Essen, 1996. · Zbl 0912.13001
[40] Robert M. Fossum and Phillip A. Griffith, Complete local factorial rings which are not Cohen-Macaulay in characteristic \?, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 189 – 199. · Zbl 0303.13015
[41] A. M. Garsia and D. Stanton, Group actions of Stanley-Reisner rings and invariants of permutation groups, Adv. in Math. 51 (1984), no. 2, 107 – 201. · Zbl 0561.06002
[42] O. E. Glenn, Modular invariant processes, Bull. Amer. Math. Soc. 21 (1914-15), 167-173.
[43] Manfred Göbel, Computing bases for rings of permutation-invariant polynomials, J. Symbolic Comput. 19 (1995), no. 4, 285 – 291. · Zbl 0832.13006
[44] N. L. Gordeev, Coranks of elements of linear groups and the complexity of algebras of invariants, Algebra i Analiz 2 (1990), no. 2, 39 – 64 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 2, 245 – 267. · Zbl 0703.20038
[45] D. Hilbert, Über die Theorie der Algebraischen Formen, Math. Ann. 36 (1890), 473-534. · JFM 22.0133.01
[46] -, Über die vollen Invariantensysteme, Math. Ann. 42 (1893), 313-373. · JFM 25.0173.01
[47] David Hilbert, Hilbert’s invariant theory papers, Lie Groups: History, Frontiers and Applications, VIII, Math Sci Press, Brookline, Mass., 1978. Translated from the German by Michael Ackerman; With comments by Robert Hermann. · Zbl 0405.22001
[48] -, Theory of algebraic invariants (translated by Reinhard C. Laudenbacher), Cambridge Univ. Press, Cambridge, 1993.
[49] Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. · Zbl 0483.57002
[50] Howard Hiller and Larry Smith, On the realization and classification of cyclic extensions of polynomial algebras over the Steenrod algebra, Proc. Amer. Math. Soc. 100 (1987), no. 4, 731 – 738. · Zbl 0663.55009
[51] M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020 – 1058. · Zbl 0244.13012
[52] Shou-Jen Hu and Ming-chang Kang, Efficient generation of the ring of invariants, J. Algebra 180 (1996), no. 2, 341 – 363. · Zbl 0846.15014
[53] Victor G. Kac, Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 74 – 108. · Zbl 0534.14004
[54] Victor G. Kac and Dale H. Peterson, Generalized invariants of groups generated by reflections, Geometry today (Rome, 1984) Progr. Math., vol. 60, Birkhäuser Boston, Boston, MA, 1985, pp. 231 – 249. · Zbl 0578.20033
[55] G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), 351-366. · Zbl 0889.13004
[56] G. Kemper and G. Malle, The finite irreducible linear groups with polynomial ring of invariants, Preprint, Univ. Heidelberg, 1996. · Zbl 0899.13004
[57] N. Killius, Some modular invariant theory of finite groups with particular emphasis on the cyclic group, Diplomarbeit, Univ. Göttingen, 1996.
[58] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 (German). · Zbl 0569.14003
[59] Hanspeter Kraft, Peter Slodowy, and Tonny A. Springer , Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar, vol. 13, Birkhäuser Verlag, Basel, 1989 (German). · Zbl 0682.00008
[60] Nicholas J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra. I, Amer. J. Math. 116 (1994), no. 2, 327 – 360. · Zbl 0813.20049
[61] K. Kuhnigk, Transfer in Invariantenringen, Diplomarbeit, Univ. Göttingen (to appear).
[62] Peter S. Landweber and Robert E. Stong, The depth of rings of invariants over finite fields, Number theory (New York, 1984 – 1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 259 – 274.
[63] Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un \?-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135 – 244 (French). With an appendix by Michel Zisman. · Zbl 0857.55011
[64] J. Lannes and S. Zarati, Théorie de Smith algébrique et classification des \?*\?-\?-injectifs, Bull. Soc. Math. France 123 (1995), no. 2, 189 – 223 (French, with English and French summaries). · Zbl 0862.55002
[65] John Martino and Stewart Priddy, Stable homotopy classification of \?\?^hat_{\?}, Topology 34 (1995), no. 3, 633 – 649. · Zbl 0835.55011
[66] W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47 – 65. · Zbl 0132.19103
[67] V. L. Popov, Syzygies in the theory of invariants, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 3, 544 – 622 (Russian).
[68] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. · Zbl 0899.05068
[69] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. · Zbl 0603.13001
[70] Haynes Miller and Clarence Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981), no. 3, 293 – 307. · Zbl 0469.55012
[71] T. Molien, Über die Invarianten der linearen Substitutionsgruppen, Sitzungsber. König. Preuss. Akad. Wiss. (1897), 1152-1156. · JFM 28.0115.01
[72] Haruhisa Nakajima, Invariants of reflection groups in positive characteristics, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 6, 219 – 221. · Zbl 0434.13008
[73] Haruhisa Nakajima, Invariants of finite groups generated by pseudoreflections in positive characteristic, Tsukuba J. Math. 3 (1979), no. 1, 109 – 122. · Zbl 0418.20041
[74] Haruhisa Nakajima, Invariants of finite abelian groups generated by transvections, Tokyo J. Math. 3 (1980), no. 2, 201 – 214. · Zbl 0453.20039
[75] Haruhisa Nakajima, On some invariant subrings of polynomial rings in positive characteristics, Proceedings of the 13th Symposium on Ring Theory (Okayama Univ., Okayama, 1980) Okayama Univ., Okayama, 1981, pp. 91 – 107.
[76] Haruhisa Nakajima, Modular representations of \?-groups with regular rings of invariants, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 10, 469 – 473. · Zbl 0481.20011
[77] Haruhisa Nakajima, Modular representations of abelian groups with regular rings of invariants, Nagoya Math. J. 86 (1982), 229 – 248. · Zbl 0443.14005
[78] Haruhisa Nakajima, Relative invariants of finite groups, J. Algebra 79 (1982), no. 1, 218 – 234. · Zbl 0499.20029
[79] Haruhisa Nakajima, Rings of invariants of finite groups which are hypersurfaces, J. Algebra 80 (1983), no. 2, 279 – 294. · Zbl 0524.14013
[80] Haruhisa Nakajima, Regular rings of invariants of unipotent groups, J. Algebra 85 (1983), no. 2, 253 – 286. · Zbl 0536.20028
[81] Haruhisa Nakajima, Rings of invariants of finite groups which are hypersurfaces. II, Adv. in Math. 65 (1987), no. 1, 39 – 64. · Zbl 0626.14010
[82] Amnon Neeman, The connection between a conjecture of Carlisle and Kropholler, now a theorem of Benson and Crawley-Boevey, and Grothendieck’s Riemann-Roch and duality theorems, Comment. Math. Helv. 70 (1995), no. 3, 339 – 349. · Zbl 0851.13002
[83] F. Neumann, M. D. Neusel, and L. Smith, Rings of generalized and stable invariants of pseudoreflections and pseudoreflection groups, J. Algebra 182 (1996), 85-122. · Zbl 0934.13004
[84] -, Rings of generalized invariants and classifying spaces of compact Lie groups, Preprint Nr. 14, Otto-von-Guericke-Universität Magdeburg, 1996.
[85] M. D. Neusel, Invariants of some abelian \(p\)-groups in characteristic \(p\), Proc. Amer. Math. Soc. (to appear). · Zbl 0946.13005
[86] -, Integral extensions of unstable algebras over the Steenrod algebra, Preprint, Royal Institute of Technology, Stockholm, 1996.
[87] -, \(\mathcal {P}^*\)-Commutative algebra (to appear).
[88] M. D. Neusel and L. Smith, The Lasker-Noether theorem for \(\mathcal {P}^*\)-invariant ideals, Preprint Nr. 26, Otto-von-Guericke-Universität Magdeburg, 1995.
[89] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92. · JFM 45.0198.01
[90] -, Der Endlichkeitssatz der Invarianten endlicher linear Gruppen der Characteristik \(p\), Nachr. Akad. Wiss. Göttingen (1926), 28-35. · JFM 52.0106.01
[91] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47 – 119 (French). · Zbl 0268.13008
[92] Victor Reiner, On Göbel’s bound for invariants of permutation groups, Arch. Math. (Basel) 65 (1995), no. 6, 475 – 480. · Zbl 0854.13005
[93] V. Reiner and L. Smith, Systems of parameters for rings of invariants, Preprint, Göttingen, 1996.
[94] David R. Richman, On vector invariants over finite fields, Adv. Math. 81 (1990), no. 1, 30 – 65. · Zbl 0715.13002
[95] -, On vector invariants over finite fields, Adv. in Math. (to appear).
[96] Barbara J. Schmid, Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 35 – 66. · Zbl 0770.20004
[97] L. Schwartz, Lectures on Lannes technology, Univ. of Chicago Press, Chicago, 1994.
[98] Jean-Pierre Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957 – 1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). · Zbl 0142.28603
[99] Jean-Pierre Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413 – 420 (French). · Zbl 0136.27402
[100] Jean-Pierre Serre, Représentations linéaires des groupes finis, Third revised edition, Hermann, Paris, 1978 (French). · Zbl 0205.04001
[101] William M. Singer, Iterated loop functors and the homology of the Steenrod algebra, J. Pure Appl. Algebra 11 (1977/78), no. 1 – 3, 83 – 101. · Zbl 0374.55017
[102] William M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493 – 523. · Zbl 0687.55014
[103] N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, Amer. Math. Monthly 84 (1977), no. 2, 82 – 107. · Zbl 0357.94014
[104] Larry Smith, Realizing certain polynomial algebras as cohomology rings of spaces of finite type fibered over \times \?\?(\?), Pacific J. Math. 126 (1987), no. 2, 361 – 377. · Zbl 0656.55014
[105] -, \(e\)-Invariants and finite covers, II, Trans. Amer. Math. Soc. 347 (1995), 5009-5021.
[106] Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. · Zbl 0864.13002
[107] Larry Smith, E. Noether’s bound in the invariant theory of finite groups, Arch. Math. (Basel) 66 (1996), no. 2, 89 – 92. · Zbl 0854.13006
[108] Larry Smith, \?*-invariant ideals in rings of invariants, Forum Math. 8 (1996), no. 3, 319 – 342. · Zbl 0872.55016
[109] Larry Smith and R. E. Stong, On the invariant theory of finite groups: orbit polynomials and splitting principles, J. Algebra 110 (1987), no. 1, 134 – 157. · Zbl 0652.20046
[110] Larry Smith and R. M. Switzer, Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), no. 2, 303 – 313. · Zbl 0532.55019
[111] Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 475 – 511. · Zbl 0497.20002
[112] Robert Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392 – 400. · Zbl 0196.39202
[113] Robert Steinberg, On Dickson’s theorem on invariants, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 699 – 707. · Zbl 0656.20052
[114] Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993. · Zbl 0802.13002
[115] B. L. van der Waerden, Modern algebra I, II (translated by F. Blum), Ungar, New York, 1949. · Zbl 0039.00902
[116] H. Weyl, The classical groups, second ed., Princeton Univ. Press, Princeton, 1946. · JFM 65.0058.02
[117] Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421 – 434. · Zbl 0525.55013
[118] R. M. W. Wood, An introduction to the Steenrod algebra through differential operators, Preprint, Manchester Univ., 1995.
[119] Wu Wen-Tsün, Sur les puissances de Steenrod, Colloque de Topologie de Strasbourg, 1951. · Zbl 0049.24001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.