A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. (English) Zbl 0904.76040

Summary: We consider a discretization of the incompressible Navier-Stokes equations involving a second-order time scheme based on the characteristics method and a spatial discretization of finite element type. Theoretical and numerical analyses are detailed and we obtain stability results and optimal error estimates on the velocity and pressure under a time step restriction less stringent than the standard Courant-Friedrichs-Levy condition. Finally, some numerical results obtained with the code N3S are shown which justify the interest of this scheme and its advantages with respect to an analogous first-order time scheme.


76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
Full Text: DOI


[1] , and , ’A high order characteristics/spectral method for the incompressible Navier-Stokes equations’, in preparation.
[2] , and , ’A high order Lagrangian decoupling method for the incompressible Navier-Stokes equations’, in and (eds), Proc. ICOSAHOM apos;89 Meet., North-Holland, Amsterdam, (1990).
[3] Maday, J. Sci. Comput. 5 pp 263– (1990)
[4] , and , ’A finite element method for the Navier-Stokes equations’, Proc. Third Int. Conf. on Finite Elements in Flow Problems, Banff, June (1980).
[5] Pironneau, Numer. Math. 38 pp 309– (1982)
[6] Douglas, SIAM J. Numer. Anal. 19 (1982)
[7] Suli, Numer. Math. 53 pp 459– (1988)
[8] Suli, SIAM J. Numer. Anal. 28 pp 423– (1991)
[9] ’A spectral Lagrange-Galerkin method for convection-dominated diffusion problems’, Thesis, (1991).
[10] ’N3S code for fluid mechanics-theoretical manual-version 3.0’, Rep. HE 41/91.30 B, (1991).
[11] and , ’Multistep Galerkin method along characteristics for convection-diffusion problems’, in R. Vichnevetsky and R. S. Stepleman (eds), Advances in Computational Methods for P.D.E., (1981) pp. 28-36.
[12] , and , ’Presentation of a second order time scheme using the characteristics method and applied to the Navier-Stokes equations’, Proc. IMACS apos;91 13th World Congr. on Computational and Applied Mathematics, Vol. 2, Dublin, (1991) pp. 629.
[13] Buscaglia, Int. j. numer. methods fluids 15 pp 23– (1992)
[14] ’Méthodes en temps d’order élevé par décomposition d’opérateurs. Application aux éuations de Navier-Stokes’, Thesis, Université Pierre et Marie Curie, Mathématiques, Paris, (1993).
[15] ’Stability and convergence of the Lagrange-Galerkin method with non-exact integration’, in (ed.), The Mathematics of Finite Elements and Application, Academic, New York, (1988) pp. 435-442.
[16] Morton, RAIRO M2AN 22 pp 123– (1988)
[17] and , Finite Element Methods for the Navier-Stokes Equations, Theory and Algorthms, Springer, Berlin, (1986). · Zbl 0585.65077
[18] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, (1978).
[19] Heywood, SIAM J. Numer. Anal. 27 pp 353– (1990)
[20] Landriani, SIAM J. Numer. Anal. 27 pp 1160– (1990)
[21] ’Résolution spectrale des equations de Navier-Stokes par une méthode de sous-domaines courbes’, Thesis, Université Pierre et Marie Curie, Mathématiques, Paris, (1987).
[22] and , ’Projet N3S de mécanique des fluides. Etude d’un schéma aux caracteristiques d’order 2 pour la résolution des équations de Navier-Stokes’, EDF Rep. HI72/7094, (1990).
[23] ’Numerical simulation of oscillatory convection in low-Pr fluids’, in (ed.), Notes on Numerical Mechanics, Vol. 27, Vieweg, Braunschweig, (1990). · Zbl 0715.76074
[24] Boukir, Comput. Methods Appl. Mech. Eng. 116 pp 211– (1994)
[25] and , in and (eds), Finite Element Approximation of the Navier-Stokes Equations, Springer, Berlin, (1981).
[26] Chorin, Math. Comput. 23 pp 341– (1969)
[27] Patankar, Int. J. Heat Mass Transfer 15 pp 1787– (1972)
[28] Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, (1977).
[29] Shen, SIAM J. Numer. Anal. 29 pp 57– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.