×

What are fuzzy rules and how to use them. (English) Zbl 0905.03008

Summary: Fuzzy rules have been advocated as a key tool for expressing pieces of knowledge in “fuzzy logic”. However, there does not exist a unique kind of fuzzy rules, nor is there only one type of “fuzzy logic”. This diversity has caused many a misunderstanding in the literature of fuzzy control. The paper is a survey of different possible semantics for a fuzzy rule and shows how they can be captured in the framework of fuzzy set and possibility theory. It is pointed out that the interpretation of fuzzy rules dictates the way the fuzzy rules should be combined. The various kinds of fuzzy rules considered in the paper (gradual rules, certainty rules, possibility rules, and others) have different inference behaviors and correspond to various intended uses and applications. The representation of fuzzy unless-rules is briefly investigated on the basis of their intended meaning. The problem of defining and checking the coherence of a block of parallel fuzzy rules is also briefly addressed. This issue has been neglected in the fuzzy control literature although it looks important for validation purposes.

MSC:

03B52 Fuzzy logic; logic of vagueness
68T30 Knowledge representation
93C42 Fuzzy control/observation systems
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Baldwin, J. F., A new approach to approximate reasoning using a fuzzy logic, Fuzzy Sets and Systems, 2, 309-325 (1979) · Zbl 0413.03017
[2] Baldwin, J. F.; Guild, N. C.F., Modelling controllers using fuzzy relations, Kybernetes, 9, 223-229 (1980) · Zbl 0452.93005
[3] benferhat, S.; Dubois, D.; Prade, H., Representing default rules in possibilistic logic, (Nebel, B.; Rich, C.; Swartout, W., Proc. 3rd Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR’92). Proc. 3rd Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR’92), Cambridge, MA (1992)), 673-684
[4] Bouchon, B., Fuzzy inferences and conditional possibility distributions, Fuzzy Sets and Systems, 23, 33-41 (1987) · Zbl 0633.68100
[5] Bouchon-Meunier, B., La Logique Floue (1993), Presses Universitaires de France: Presses Universitaires de France Paris · Zbl 0782.04007
[6] Bouchon-Meunier, B.; Després, S., Acquisition numérique/symbolique de connaissances graduelles, (Actes des 3êmes Journées Nationales du PRC-GDR Intelligence Artificielle. Actes des 3êmes Journées Nationales du PRC-GDR Intelligence Artificielle, Paris (5-7 mars 1990)), 127-138
[7] Doherty, P.; Driankov, D.; Hellendoorn, H., Fuzzy if-then-unless rules and their implementation, (Research Report LiTH-IDA-R92-21 (1992), Dept. of Computer & Inform. Science, Linköping Univ: Dept. of Computer & Inform. Science, Linköping Univ 581 83 Linköping, Sweden) · Zbl 1232.68126
[8] Driankov, D.; Hellendoorn, H., Fuzzy logic with unless-rules, (Tech. Report IDA-RKL-92-TR50 (1992), Dept. of Computer & Inform. Science, Linköping Univ: Dept. of Computer & Inform. Science, Linköping Univ 581 83 Linksping, Sweden) · Zbl 0850.93466
[9] Driankov, D.; Hellendoorn, H.; Reinfrank, M., An Introduction to Fuzzy Control (1993), Springer: Springer Berlin · Zbl 0789.93088
[10] Dubois, D.; Grabisch, M.; Prade, H., Gradual rules and the approximation of control laws, (Nguyen, H. T.; Sugeno, M.; Tong, R.; Yager, R., Theoretical Aspects of Fuzzy Control (1995), Wiley: Wiley New York), 147-181 · Zbl 0897.93037
[11] Dubois, D.; Lang, J.; Prade, H., Automated reasoning using possibilistic logic: Semantics, belief revision, and variable certainty weights, IEEE Trans. Data Knowledge Eng., 6, 64-71 (1994)
[12] Dubois, D.; Martin-Clouaire, R.; Prade, H., Practical computing in fuzzy logic, (Gupta, M. M.; Yamakawa, T., Fuzzy computing (1988), North-Holland: North-Holland Amsterdam), 11-34 · Zbl 0671.03016
[13] Dubois, D.; Prade, H., A theorem on implication functions defined from triangular norms, Stochastica, 8, 3, 267-279 (1984) · Zbl 0581.03016
[14] Dubois, D.; Prade, H., On the combination of uncertain or imprecise pieces of information in rule-based systems — A discussion in the framework of possibility theory, Internat. J. of Approx. Reason., 2, 1, 65-87 (1988) · Zbl 0646.68112
[15] Dubois, D.; Prade, H., A typology of fuzzy “if … then …” rules, (Proc. 3rd Internat Fuzzy Systems Assoc. (6-11 August 1989), (IFSA) Congress: (IFSA) Congress Seattle, WA), 782-785
[16] Dubois, D.; Prade, H., Fuzzy sets in approximate reasoning — Part 1: Inference with possibility distributions, Fuzzy Sets and Systems, 40, 143-202 (1991) · Zbl 0722.03017
[17] Dubois, D.; Prade, H., Basic issues on fuzzy rules and their application to fuzzy control, (Driankov, D.; Eklund, P. W.; Ralescu, A. L., Fuzzy Logic and Fuzzy Control, Proc. IJCAI’91 Workshops on Fuzzy Logic and Fuzzy Control. Fuzzy Logic and Fuzzy Control, Proc. IJCAI’91 Workshops on Fuzzy Logic and Fuzzy Control, August 1991. Fuzzy Logic and Fuzzy Control, Proc. IJCAI’91 Workshops on Fuzzy Logic and Fuzzy Control. Fuzzy Logic and Fuzzy Control, Proc. IJCAI’91 Workshops on Fuzzy Logic and Fuzzy Control, August 1991, Lecture Notes in Artificial Intelligence, Vol. 833 (1994), Springer: Springer Berlin), 3-14, (1991b)
[18] Dubois, D.; Prade, H., Fuzzy rules in knowledge-based systems — Modelling gradedness, uncertainty and preference, (Yager, R. R.; Zadeh, L. A., An introduction to Fuzzy Logic Applications in Intelligent Systems (1992), Kluwer: Kluwer Dordrecht), 45-68
[19] Dubois, D.; Prade, H., Gradual inference rules in approximate reasoning, Inform. Sci., 61, 103-122 (1992) · Zbl 0736.68070
[20] Dubois, D.; Prade, H., On the validation of fuzzy knowledge bases, (Tzafestas, S. G.; Venetsanopoulos, A. N., Fuzzy Reasoning in Information, Decision and Control Systems (1994), Kluwer: Kluwer Dordrecht), 31-49
[21] Dubois, D.; Prade, H., Conditional objects as nonmonotonic consequence relationships, IEEE Trans. Systems, Man Cybernet., 24, 12, 1724-1739 (1994) · Zbl 1371.03041
[22] Goodman, I. R.; Nguyen, H. T.; Walker, E. A., Conditional Inference and Logic for Intelligent Systems — A Theory of Measure-Free Conditioning (1991), North-Holland: North-Holland Amsterdam
[23] Kaufmann, A., Introduction à la Théorie des Sous-Ensembles Flous - Vol. 1: Eléments Théoriques de Base (1973), Masson: Masson Paris, English translation (Academic Press, New York, 1975) · Zbl 0302.02023
[24] Kaufmann, A., Nouvelles Logiques pour l’Intelligence Artificielle (1987), Hermès: Hermès Paris · Zbl 0722.68096
[25] Kaufmann, A., Le Paramétrage des Moteurs d’Inference (1988), Hermès: Hermès Paris
[26] Mendel, J. M., Fuzzy logic systems for engineering: A tutorial, (Proc. IEEE, 83 (1995)), 345-377, (3)
[27] Mizumoto, M.; Zimmermann, H. J., Comparison of fuzzy reasoning methods, Fuzzy Sets and Systems, 8, 253-283 (1982) · Zbl 0501.03013
[28] Ruspini, E. H., On the semantics of fuzzy logic, Internat. J. of Approx. Reason., 5, 45-88 (1991) · Zbl 0724.03018
[29] Sugeno, M., An introductory survey of fuzzy control, Inform. Sci., 36, 59-83 (1985) · Zbl 0586.93053
[30] Trillas, E.; Valverde, L., On mode and implication in approximate reasoning, (Gupta, M. M.; Kandel, A.; Bandler, W.; Kiszka, J. B., Approximate Reasoning in Expert Systems (1985), North-Holland: North-Holland Amsterdam), 157-166
[31] L. Ughetto, D. Dubois and H. Prade, La cohérence des systèmes de règles graduelles. Actes des 5èmes Journées Francophones “Logique Floue et Applications” (LFA’95), Paris, Nov. 27-28, Cepaduès, Toulouse, 103-110.; L. Ughetto, D. Dubois and H. Prade, La cohérence des systèmes de règles graduelles. Actes des 5èmes Journées Francophones “Logique Floue et Applications” (LFA’95), Paris, Nov. 27-28, Cepaduès, Toulouse, 103-110.
[32] Weber, S., Decomposable measures for conditional objects, (Klement, E. P.; Weber, S., Proc. 10th Internat. Seminar on Fuzzy Set Theory — Measures and Integrals — Alternative Concepts. Proc. 10th Internat. Seminar on Fuzzy Set Theory — Measures and Integrals — Alternative Concepts, Linz, Austria (12-16 September, 1988) (1988), Universitätsdirektion, J. Kepler Universität: Universitätsdirektion, J. Kepler Universität 4040 Linz, Austria), 53-61, (abstracts)
[33] Zadeh, L. A., A fuzzy set-theoretic interpretation of linguistic hedges, J. Cybernetics, 2, 3, 4-34 (1972)
[34] Zadeh, L. A., PRUF — A meaning representation language for natural languages, Internat. J. Man-Machine Studies, 10, 395-460 (1978) · Zbl 0406.68063
[35] Zadeh, L. A., A theory of approximate reasoning, (Hayes, J. E.; Mitchie, D.; Mikulich, L. I., Machine Intelligence, Vol. 9 (1979), Wiley: Wiley New York), 149-194
[36] Zadeh, L. A., The calculus of fuzzy if/then rules, AI Expert, 7, 3, 23-27 (1992)
[37] Zadeh, L. A., Soft computing and fuzzy logic, IEEE Software, 48-56 (November 1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.