×

zbMATH — the first resource for mathematics

Maximal unramified extensions of imaginary quadratic number fields of small conductors. (English) Zbl 0905.11048
This paper deals with the structure of the Galois groups \(\text{Gal} (K_{ur}/K)\) of the maximal unramified extensions \(K_{ur}\) of imaginary quadratic number fields \(K\) of conductors \(\leq 420\) \((\leq 719\) under the Generalized Riemann Hypothesis). The author shows that for all such \(K\), \(K_{ur}\) is precisely the top of the class field tower of \(K\) and the length of the tower is at most three. The techniques to establish this result rest upon the inequality \([K_{ur}: K_1] <60\), where \(K_1\) is the top of the class field tower of \(K\), and the number 60 is significant as the smallest order of a nonsolvable group, namely \(A_5\) (the alternating group of degree 5). The above inequality \([K_{ur}: K_1] <60\) is obtained from lower bounds on the root discriminants of totally imaginary number fields, based upon the tables of Diaz and Diaz (unconditionally) and Odlyzko (assuming the Generalized Riemann Hypothesis).
In order to compute \(\text{Gal} (K_{ur}/K)\), extensive use is made of \(p\)-class field towers, class number formulas, genus field class structure, the action of Galois groups on class groups, group tables of order \(\leq 64\), and computer calculations. Finally, the author includes a number of examples, demonstrating the use of his techniques for imaginary quadratic number fields \(K=\mathbb{Q} (\sqrt {-d})\) with \(723 \leq| d| <1000\), and makes the hypothesis that \(K_{ur} =K_1\) holds for all \(K\) with \(| d| <1507\), based upon his expectation that \(\mathbb{Q} (\sqrt {-1507})\) is the first \(K\) having an unramified nonsolvable Galois extension.
In a supplement available from the author that includes some minor corrections to the paper, the table is improved upon and extended to real quadratic number fields as well.

MSC:
11R32 Galois theory
11R37 Class field theory
11R11 Quadratic extensions
11R29 Class numbers, class groups, discriminants
11-04 Software, source code, etc. for problems pertaining to number theory
11Y40 Algebraic number theory computations
PDF BibTeX XML Cite
Full Text: DOI EMIS Numdam EuDML
References:
[1] Arno, S., The imaginary quadratic fields of class number 4, Acta Arith.60 (1992), no. 4, 321-334; MR 93b:11144. · Zbl 0760.11033
[2] Arno, S., Robinson, M.L., and Wheeler, F.S., The imaginary quadratic fields of small odd class numbers, preprint, 1993. · Zbl 0904.11031
[3] Basmaji, J. and Kiming, I., A table of A5-fields, On Artin’s conjecture for odd 2-dimensional representations (G. Frey, ed.), , vol. 1585, Springer-Verlag, New York and Berlin, 1994, pp. 37-46, 122-141; MR 96e:11141. · Zbl 0837.11066
[4] Benjamin, E., Remarks concerning the 2-Hilbert class field of imaginary quadratic number fields, Bull Austral. Math. Soc.48 (1993), no. 3, 379-383; MR 94m:11133; Corrigenda, ibid.50 (1994), no. 2, 351-352. · Zbl 0816.11054
[5] Benjamin, E., Lemmermeyer, F., and Snyder, C., Imaginary quadratic fields k with cyclic Cl2(k1), J. Number Theory67 (1997), no. 2, 229-245. · Zbl 0919.11074
[6] Brauer, R., Beziehung zwischen Klassenzahl von Teilkörpern eines galoisschen Körpers, Math. Nachr.4 (1951), no. 139, 158-174; MR 12, 593b; reprinted in Collected papers, vol. III, MIT Press, Cambridge, Mass.-London, 1980, pp. 497-513. · Zbl 0042.03801
[7] Buell, D.A., Small class number and extreme values of L-functions of quadratic fields, Math. Comp.31 (1977), no. 139, 786-796; MR 55 #12684. · Zbl 0379.12001
[8] Carter, R. and Fong, P., The Sylow 2-subgroups of the finite classical groups, J. Algebra1 (1964), no. 2, 139-151; MR 29 #3548. · Zbl 0123.02901
[9] Castela, C., Nombre de classes d’idéaux d’une extension diédrale d’un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, 483-486; MR 80c:12012. · Zbl 0395.12011
[10] Cohen, H. and Lenstra, H.W., Jr., Heuristics on class groups of number fields, Number Theory, Noordwijkerhout, 1983 (H. Jager, ed.), , vol. 1068, Springer-Verlag, Berlin and New York, 1984, pp. 33-62; MR 85j:11144. · Zbl 0558.12002
[11] Cohn, H., A classical invitation to algebraic numbers and class fields, Universitext, Springer-Verlag, Berlin and New York, 1978; MR 80c:12001. · Zbl 0395.12001
[12] Diaz y Diaz, F., Tables minorant la racine n-ième du discriminant d’un corps de degré n, Publications Mathématiques d’Orsay80, 6., Université de Paris-Sud, Département de Mathématique, Orsay, 1980; MR 82i:12007. · Zbl 0482.12003
[13] Godwin, H.J., On quartic fields of signature one with small discriminant. II, Math. Comp.42 (1984), no. 166, 707-711; MR 85i:11092a; Corrigendum, ibid.43 (1984), no. 168, 621; MR 85i:11092b. · Zbl 0535.12003
[14] ____, On totally complex quartic fields with small discriminant, Proc. Cambridge Philos. Soc.53 (1957), 1-4; MR 18, 565c. · Zbl 0077.04601
[15] ____, On relations between cubic and quartic fields, Quart. J. Math. Oxford (2) 13 (1962), 206-212; Corrigendum, ibid. (3) 26 (1975), no. 104, 511-512; MR 52 #8078. · Zbl 0106.02803
[16] Hajir, F., Unramified elliptic units, thesis, MIT, 1993. · Zbl 0787.11023
[17] Hall, M., Jr. and Senior, J.K., The groups of order 2n(n ≤ 6), The Macmillan Co., New York, 1964; MR 29 #5889. · Zbl 0192.11701
[18] Halter-Koch, F., Einheiten und Divisorenklassen in Galois’schen algebraischen Zahlkörpern mit Diedergruppe der Ordnung 2l für eine ungerade Primzahll, Acta Arith.33 (1977), no. 4, 355-364; MR 56 #11955. · Zbl 0416.12003
[19] Halter-Koch, F. et Moser, N., Sur le nombre de classes de certaines extensions métacycliques sur Q ou sur un corps quadratiques imaginaires, J. Math. Soc. Japan30 (1978), no. 2, 237-248; MR 58 #5587. · Zbl 0368.12003
[20] Hayashi, H., On elliptic units and class number of a certain dihedral extension of degree 2l, Acta Arith.45 (1985), no. 1, 35-45; MR 86m:11081. · Zbl 0499.12002
[21] Herz, C.S., Construction of class fields, Seminar on Complex Multiplication, Chap. VII, , vol. 21, Springer-Verlag, Berlin and New York, 1966.
[22] Huppert, B., Endliche Gruppen I, Die Grundlehren der math. Wiss., Bd. 134, Springer-Verlag, Berlin and New York, 1967; MR 37 #302. · Zbl 0217.07201
[23] Jehanne, A., Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith.70 (1995), no. 3, 259-276; MR 95m:11127. · Zbl 0829.11059
[24] Kientega, G. and Barrucand, P., On quartic fields with symmetric group, Number theory (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 287-297; MR 92e:11113. · Zbl 0716.11050
[25] Kisilevsky, H., Number fields with class number congruent to 4 mod 8 and Hilbert’s Theorem 94, J. Number Theory8 (1976), no. 3, 271-279; MR 54 #5188. · Zbl 0334.12019
[26] Kondo, T., Algebraic number fields with the discriminant equal to that of a quadratic number field, J. Math. Soc. Japan47 (1995), no. 1, 31-36; MR 95h:11121. · Zbl 0865.11074
[27] Kuroda, S., Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J.1 (1950), 1-10; MR 12, 593a. · Zbl 0037.16101
[28] Lemmermeyer, F., Kuroda’s class number formula, Acta Arith.66 (1994), no. 3, 245-260; MR 95f:11090. · Zbl 0807.11052
[29] ____, On 2-class field towers of imaginary quadratic number fields, J. Théor. Nombres Bordeaux6 (1994), no. 2, 261-272; MR 96k:11136. · Zbl 0826.11052
[30] ____, On unramified quaternion extension of imaginary quadratic number fields, J. Théor. Nombres Bordeaux9 (1997), no. 1, 51-68. · Zbl 0890.11031
[31] ____, On 2-Class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg67 (1997), 205-214. · Zbl 0919.11075
[32] ____, Private communication, 1996.
[33] Martinet, J., Corps de nombres de classes 1, Séminaire de Théorie des Nombres1977-1978, Exp. No. 12, CNRS, Talence, 1978; MR 80k:12009. · Zbl 0399.12002
[34] ____, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980), 56, Cambridge Univ. Press, Cambridge, New York, 1982, pp. 151-193; MR 84g:12009.
[35] Masley, J.M., Class numbers of real cyclic number fields with small conductor, Compositio Math.37 (1978), no. 3, 297-319; MR 80e:12005. · Zbl 0428.12003
[36] Moser, N., Unités et nombre de classes d’une extension galoisienne diédrale de Q, Abh. Math. Sem. Univ. Hamburg48 (1979), 54-75; MR 81h:12009. · Zbl 0387.12005
[37] Nomura, A., On the existence of unramified p-extensions, Osaka J. Math.28 (1991), no. 1, 55-62; MR 92e:11115. · Zbl 0722.11055
[38] Odlyzko, A.M., Discriminant bounds, (unpublished tables), Nov. 29th 1976.
[39] ____, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119-141; MR 91i:11154. · Zbl 0722.11054
[40] Oesterlé, J., Nombres de classes de corps quadratiques imaginaires, Sém. Bourbaki1983-1984, Exp. 631, 14pp; MR 86k:11064. · Zbl 0551.12003
[41] Olivier, M., Corps sextique primitifs, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 757-767; MR 92a:11123. · Zbl 0734.11054
[42] Sag, T.W. and Wamsley, J.W., Minimal presentations for groups of order 2n, n ≦ 6, J. Austral. Math. Soc.15 (1973), 461-469; MR 49 #406. · Zbl 0267.20028
[43] Schoof, R., Private communication, 1996.
[44] Schwarz, A., Pohst, M. and Diaz y Diaz, F., A table of quintic number fields, Math. Comp.63 (1994), no. 207, 361-374; MR 94i:11108. · Zbl 0822.11087
[45] Serre, J.-P., Modular forms of weight one and Galois representations, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (A. Fröhlich, ed.), Academic Press, London, 1977, pp. 193-268; MR 56 #8497; repreinted in Collected papres, vol. III, Springer-Verlag, New York and Berlin, 1986, pp. 292-367. · Zbl 0366.10022
[46] ____, Topics in Galois theory, , vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992; MR 94d:12006. · Zbl 0746.12001
[47] Short, M.W., The primitive soluble permutation groups of degree less than 256, , vol. 1519, Springer-Verlag, Berlin and New York, 1992; MR 93g:20006. · Zbl 0752.20001
[48] Stephens, A.G. and Williams, H.C., Computation of real quadratic fields with class number one, Math. Comp.51 (1988), no. 184, 809-824; MR 90b:11106. · Zbl 0699.12006
[49] Taussky, O., A remark on the class field tower, J. London Math. Soc.12 (1937), 82-85. · JFM 63.0144.03
[50] van der Linden, F., Class number computations of real abelian number fields, Math. Comp.39 (1982), no. 160, 693-707; MR 84e:12005. · Zbl 0505.12010
[51] Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 13 (1966), 201-209; MR 35 #5414. · Zbl 0158.30103
[52] Wagner, C., Class number 5, 6 and 7, Math. Comp.65 (1996), no. 214, 785-800; MR 96g:11135. · Zbl 0857.11057
[53] Washington, L.C., Introduction to Cyclotomic Fields, Graduate Text in Math., vol. 83, Springer-Verlag, Berlin and New York, 1982; MR 85g:11101. · Zbl 0484.12001
[54] Yamamoto, Y., Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic, Osaka J. Math.21 (1984), no. 1, 1-22; MR 85g:11092. · Zbl 0535.12002
[55] Yamamura, K., On unramified Galois extensions of real quadratic number fields, Osaka J. Math.23 (1986), no. 2, 471-486; MR 88a:11112. · Zbl 0609.12006
[56] ____, Some analogue of Hilbert’s irreducibility theorem and the distribution of algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 38 (1991), no. 1, 99-135; MR 92e:11132. · Zbl 0747.14001
[57] ____, The determination of the imaginary abelian number fields with class number one, Math. Comp.62 (1994), no. 206, 899-921; MR 94g:11096. · Zbl 0798.11046
[58] ____, The maximal unramified extensions of the imaginary quadratic number fields with class number two, J. Number Theory60 (1996), no. 2, 42-50; MR 97g:11119. · Zbl 0865.11077
[59] ____, Determination of the non-CM imaginary normal octic number fields with class number one, submitted for publication. · Zbl 0924.11091
[60] ____, Real quadratic number fields with class number one having an unramified An-extension, in preparation.
[61] Yamazaki, K., Computations of Galois groups, Proc. Symp. Group theory and its application (T. Kondo, ed.), 1981, pp. 9-57. (Japanese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.