×

zbMATH — the first resource for mathematics

A representation of isometries on function spaces. (English) Zbl 0905.47023
The author proves that every surjective isometry \(Q\) between certain ideal spaces is a weighted composition operator, i.e. \(Qf(t)= q(t)f(\varphi(t))\).

MSC:
47B38 Linear operators on function spaces (general)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
PDF BibTeX XML Cite
Full Text: arXiv