zbMATH — the first resource for mathematics

Membrane locking in the finite element computation of very thin elastic shells. (English) Zbl 0905.73066
The locking phenomenon is described in terms of lack of robustness (i.e. lack of uniformity of the finite element convergence \(h\searrow 0\) with respect to the thickness of the shell \(2\varepsilon\)). We prove that any finite element scheme consisting of piecewise polynomial functions necessarily exhibits locking for certain shells (and probably for almost any shell admiting pure bendings). Numerical experiments are done for a hyperbolic paraboloid. The superiority of schemes involving high-order polynomials (Ganev-Argyris, in particular) is shown. It is also seen that reduced integration has very little influence on membrane locking.

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
Full Text: DOI EuDML
[1] J. L. AKIAN et E. SANCHEZ-PALENCIA, ” Approximation des coques élastiques minces par facettes palnes. Phénomène deblocage membranaire”, Compt. Rend. Acad. Sci. Paris, 315, p. 363-369 (1992). Zbl0761.73068 MR1179736 · Zbl 0761.73068
[2] I. BABUSKA and M. SURI, ” On locking and robustness in the finite element method”, SIAM Jour. Numer. Anal., 29, p. 1261-1293 (1992). Zbl0763.65085 MR1182731 · Zbl 0763.65085 · doi:10.1137/0729075
[3] T. BELYTSCHKO, H. STOLARSKI, W.K. LIU, N. CARPENTER and J.S.J. ONG, ” Stress projection for membrane and shear locking in shell finite elements”, Comp. Meth. Appl. Mech. Engng., 51, p. 221-258 (1985). Zbl0581.73091 MR822746 · Zbl 0581.73091 · doi:10.1016/0045-7825(85)90035-0
[4] M. BERNADOU, ” Méthodes d’éléments finis pour les problèmes de coques minces”, Masson, Paris (1994).
[5] M. BERNADOU and RG. CIARLET, ” Sur l’ellipticité du modèle linéaire de coques de W.T. Koiter”, in Computing methods in Sciences and Engineering, R. Glowinski, J.L. Lions éd., p. 89-136, Lecture Notes in Econom. and Math. Systems, vol. 134 (1976). Zbl0356.73066 · Zbl 0356.73066
[6] D. CHENAIS, J. C. PAUMIER, ” On the locking phenomenon for a class of elliptic problems”, Num. Math., 67, p. 427-440 (1994). Zbl0798.73054 MR1274440 · Zbl 0798.73054 · doi:10.1007/s002110050036
[7] PG. CIARLET, ” The finite element method for elliptic problems”, North-Holland, Amsterdam (1978). Zbl0383.65058 MR520174 · Zbl 0383.65058
[8] G. GEYMONAT and E. SANCHEZ-PALENCIA, ” On the rigidity of certain surfaces with edges and application to shell theory”, Arch. Rat. Mech. Anal., 129, p. 11-45 (1995). Zbl0830.73040 MR1328470 · Zbl 0830.73040 · doi:10.1007/BF00375125
[9] [9] A. HABBAL and D. CHENAIS, ” Deterioration of a finite element method for arch structures when thickness goes to zero”, Num. Math., 62, p. 321-341 (1992). Zbl0756.73088 MR1169008 · Zbl 0756.73088 · doi:10.1007/BF01396233 · eudml:133654
[10] A. KALMOULAKOS, ” A Catenoidal patch test for the inextensional bending of thin shell finite elements”, Comput. Meth. Appl. Mech. Engng., 92, p. 1-32 (1991). Zbl0742.73020 · Zbl 0742.73020 · doi:10.1016/0045-7825(91)90195-C
[11] F. KIKUCHI, ” Accuracy for some finite element models for arch problems”, Comput. Meth. Appl. Mech. Engng., 35, p. 315-345 (1982). Zbl0499.73068 MR683670 · Zbl 0499.73068 · doi:10.1016/0045-7825(82)90109-8
[12] J.N. Lyess and D. Jesperse, ” Moderate degree symmetrie quadrature rules for the triangle”, Jour. Inst. Math. Appl, 15, p. 19-32 (1975). Zbl0297.65018 MR378368 · Zbl 0297.65018 · doi:10.1093/imamat/15.1.19
[13] F. NIORDSON, ” Shell Theory”, North-Holland, Amsterdam (1985). Zbl0566.73053 MR807152 · Zbl 0566.73053
[14] [14] J. PITKARANTA, ” The problem of membrane locking in finite element analysis of cylindrical shells”, Num. Math., 61, p. 523-542 (1992). Zbl0768.73079 MR1155337 · Zbl 0768.73079 · doi:10.1007/BF01385524 · eudml:133636
[15] E. SANCHEZ-PALENCIA, ” Statique et dynamique des coques minces. I: Cas de flexion pure non inhibée”, Compt. Rend. Acad. Sci. Paris, série I, 309, p. 411-417 (1989). Zbl0697.73051 MR1054264 · Zbl 0697.73051
[16] E. SANCHEZ-PALENCIA, ” Statique et dynamique des coques minces. II: Cas de flexion pure inhibée, approximation membranaire”, Compt. Rend. Acad. Sci. Paris, sériel, 309, p. 531-537 (1989). Zbl0712.73056 MR1055475 · Zbl 0712.73056
[17] E. SANCHEZ-PALENCIA, ” Asymptotic and spectral properties of a class of singular-stiff problems”, J. Math. Pures Appl.,71, p. 379-406 (1992). Zbl0833.47011 MR1191581 · Zbl 0833.47011
[18] [18] E. SANCHEZ-PALENCIA, ” On the membrane approximation for thin elastic shells in the hyperbolic case”, Rev. Mat. Uni. Comp. Mad, 6, p. 311-321 (1993). Zbl0809.73042 MR1269760 · Zbl 0809.73042 · eudml:43821
[19] E. SANCHEZ-PALENCIA, ” Surfaces et coques élastiques minces: problèmes et défis”, La Vie des Sciences, 12, p. 239-258 (1995). Zbl0944.74579 MR1358346 · Zbl 0944.74579
[20] L. SCHWARTZ, ” Cours d’Analyse, vol. 1”, Hermann, Paris (1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.