Götze, F.; Künsch, H. R. Second-order correctness of the blockwise bootstrap for stationary observations. (English) Zbl 0906.62040 Ann. Stat. 24, No. 5, 1914-1933 (1996). Summary: We show that the blockwise bootstrap approximation for the distribution of a studentized statistic computed from dependent data is second-order correct provided we choose an appropriate variance estimator. We also show how to adapt the \(BC_a\) confidence interval of B. Efron [J. Am. Stat. Assoc. 82, 171-200 (1987; Zbl 0622.62039)] to the dependent case. For the proofs we extend the results of F. Götze and C. Hipp [Z. Wahrscheinlichkeitstheor. Verw. Geb. 64, 211-239 (1983; Zbl 0514.60027)] on the validity of the formal Edgeworth expansion for a sum to the studentized mean. Cited in 1 ReviewCited in 57 Documents MSC: 62G09 Nonparametric statistical resampling methods 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62G15 Nonparametric tolerance and confidence regions 62E20 Asymptotic distribution theory in statistics Keywords:time series; strong mixing; blockwise bootstrap approximation; dependent data; confidence interval; Edgeworth expansion Citations:Zbl 0622.62039; Zbl 0514.60027 × Cite Format Result Cite Review PDF Full Text: DOI