Koul, Hira L.; Schick, Anton Adaptive estimation in a random coefficient autoregressive model. (English) Zbl 0906.62087 Ann. Stat. 24, No. 3, 1025-1052 (1996). Summary: This paper proves the local asymptotic normality of a stationary and ergodic first order random coefficient autoregressive model in a semiparametric setting. This result is used to show that C. Stein’s [Proc. 3rd Berkeley Sympos. Math. Statist. Probability 1, 187-195 (1956; Zbl 0074.34801)] necessary condition for adaptive estimation of the mean of the random coefficient is satisfied if the distributions of the innovations and the errors in the random coefficients are symmetric around zero. Under these symmetry assumptions, a locally asymptotically minimax adaptive estimator of the mean of the random coefficient is constructed. The paper also proves the asymptotic normality of generalized \(M\)-estimators of the parameter of interest. These estimators are used as preliminary estimators in the above construction. Cited in 28 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62G05 Nonparametric estimation 62G35 Nonparametric robustness 62G20 Asymptotic properties of nonparametric inference Keywords:semiparametric; stationary; ergodic; generalized \(M\)-estimator; local asymptotic normality; LAN; locally asymptotically minimax adaptive estimator Citations:Zbl 0074.34801 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BICKEL, P. J. 1982. On adaptive estimation. Ann. Statist. 10 647 671. Z. · Zbl 0489.62033 · doi:10.1214/aos/1176345863 [2] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. 1993. Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press. Z. · Zbl 0786.62001 [3] FABIAN, V. and HANNAN, J. 1982. On estimation and adaptive estimation for locally asy mptotically normal families. Z. Wahrsch. Verw. Gebiete 59 459 478. Z. · Zbl 0464.62008 · doi:10.1007/BF00532803 [4] FABIAN, V. and HANNAN, J. 1985. Introduction to Probability and Mathematical Statistics. Wiley, New York. Z. · Zbl 0558.62001 [5] FABIAN, V. and HANNAN, J. 1987. Local asy mptotic behavior of densities. Statist. Decisions 5 [6] HALL, P. and HEy DE, C. C. 1980. Martingale Limit Theory and Applications. Academic Press, New York. · Zbl 0462.60045 [7] HWANG, S. Y. and BASAWA, I. V. 1993. Asy mptotic optimal inference for a class of nonlinear time series. Stochastic Process. Appl. 46 91 114. Z. · Zbl 0776.62068 · doi:10.1016/0304-4149(93)90086-J [8] KREISS, J.-P. 1987a. On adaptive estimation in stationary ARMA processes. Ann. Statist. 15 112 133. Z. · Zbl 0616.62042 · doi:10.1214/aos/1176350256 [9] KREISS, J.-P. 1987b. On adaptive estimation in autoregressive models when there are nuisance functions. Statist. Decisions 5 59 76. Z. · Zbl 0609.62123 [10] KOUL, H. L. 1992. Weighted Empiricals and Linear Models. IMS, Hay ward, CA. Z. · Zbl 0998.62501 [11] KOUL, H. L. and PFLUG, G. 1990. Weakly adaptive estimators in explosive autoregression. Ann. Statist. 18 939 960. Z. · Zbl 0709.62083 · doi:10.1214/aos/1176347634 [12] LE CAM, L. 1960. Locally asy mptotically normal families of distributions. University of California Publications in Statistics 3 37 98. Z. [13] NICHOLLS, D. F. and QUINN, B. G. 1982. Random Coefficient Autoregression Models: An Introduction. Lecture Notes in Statist. 11. Springer, New York. Z. · Zbl 0497.62081 [14] PITMAN, E. J. G. 1979. Some Basic Theory for Statistcal Inference. Chapman and Hall, London. Z. · Zbl 0442.62002 [15] RUDIN, W. 1974. Real and Complex Analy sis, 2nd ed. McGraw-Hill, New York. Z. [16] SCHICK, A. 1986. On asy mptotically efficient estimation in semi-parametric models. Ann. Statist. 14 1139 1151. Z. · Zbl 0612.62062 · doi:10.1214/aos/1176350055 [17] SCHICK, A. 1987. A note on the construction of asy mptotically linear estimators. J. Statist. · Zbl 0634.62036 · doi:10.1016/0378-3758(87)90059-0 [18] SCHICK, A. 1993. An adaptive estimator of the autocorrelation coefficient in a semiparametric regression model with autoregressive errors. Preprint. Z. [19] STEIN, C. 1956. Efficient nonparametric testing and estimation. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 1 187 195. Univ. California Press, Berkeley. Z. · Zbl 0074.34801 [20] TONG, H. 1990. Nonlinear Time Series: A Dy namical Approach. Oxford Univ. Press. [21] EAST LANSING, MICHIGAN 48824-1027 BINGHAMTON, NEW YORK 13902-6000 E-MAIL: 20974AJT@ibm.msu.edu E-MAIL: anton@math.binghamton.edu This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.