zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Regularity of solutions to a one-dimensional plasticity model. (English) Zbl 0906.73028
Summary: A quasi-static one-dimensional plasticity model subject to multilinear kinematic law is formulated as a system of variational inequalities. $H^2$ regularity in the space variable is proved for the displacement and $H^1$ regularity is proved for the stress.
74C99Plastic materials, etc.
35Q72Other PDE from mechanics (MSC2000)
35B65Smoothness and regularity of solutions of PDE
Full Text: EuDML
[1] I. BABUŠKA, Y. LI and K. L. JERINA, Rehability of computational analysis of plasticity problems, In Non-linear Computational Mechanics, P. Wriggers and W. Wagner Eds, Springer-verlag, 1991.
[2] I. BABUŠKA and P. SHI, A continuous Galerkin method in one dimensional plasticity, in preparation.
[3] P. BENILAN, M. G. GRANDALL and P. SACKS, Some Ll existence and dependence results for semilinear elliptic equationsunder non linear boundary conditions, Appl. Math. Optim. Vol. 17. 1988, pp. 203-224. Zbl0652.35043 MR922980 · Zbl 0652.35043 · doi:10.1007/BF01448367
[4] G. DUVAULT and J. L. LIONS, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Zbl0331.35002 MR600341 · Zbl 0331.35002
[5] I. EKELAND and R. TEMAM, Convex analysis and variational problems, North-Holland, 1976. Zbl0322.90046 MR463994 · Zbl 0322.90046
[6] W. HAN and B. D. REDDY, Computational plasticity: the variational basis and numerical analysis, Computational Mechanics Advances, 2, No. 2, 1995. Zbl0847.73078 MR1361227 · Zbl 0847.73078
[7] I. HLAVÁČEK, J. HASLINGER, J. NEČAS and J. LOVIŠEK, Solutions of variational inequalities in mechanics, Springer-Verlag, 1988. Zbl0654.73019 MR952855 · Zbl 0654.73019 · doi:10.1007/978-1-4612-1048-1
[8] C. JOHNSON, Existence theorems for plasticity problems, J. Math. Pure et Appl., 55, pp. 431-444 (1976). Zbl0351.73049 MR438867 · Zbl 0351.73049
[9] C. JOHNSON, On plasticity with hardening, J. Math. Anal. Appl., 62, pp. 333-344 (1978). Zbl0373.73049 MR489198 · Zbl 0373.73049 · doi:10.1016/0022-247X(78)90129-4
[10] M. A. KRASNOSEL’SKII and A. V. POKROVSKII, Systems with Hysteresis (in Russian), Nauka, Moscow, 1983 (English edition: Springer 1989). MR987431
[11] P. KREJĆĬ, Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Springer, 1996. MR2466538 · Zbl 1187.35003
[12] Y. LI and I. BABUŠKA, A convergence analysis of an H-version finite element method with high order elements for two dimensional elasto-plastic problems, SIAM J. Numer. Anal., to appear. Zbl0879.73070 MR1451111 · Zbl 0879.73070 · doi:10.1137/S0036142994263578
[13] J. LUBLINER, Plasticity Theory, Macmillan Publishing Company, New York, 1990. Zbl0745.73006 · Zbl 0745.73006
[14] J. LEMAITRE and J. L. CHABOCHE, Mechanics of Solid Materials, Cambridge University Press, 1985. Zbl0743.73002 · Zbl 0743.73002 · doi:10.1017/CBO9781139167970
[15] G. MAUGIN, The Thermodynamics of Plasticity and Fracture, Cambridge University Press, 1992. Zbl0753.73001 MR1173212 · Zbl 0753.73001 · doi:10.1017/CBO9781139172400
[16] A. VISINTIN, Differential Models of Hysteresis, Springer, 1994. Zbl0820.35004 MR1329094 · Zbl 0820.35004
[17] M. ZYZCKOWSKI, Combined Loading in the Theory of Plasticity, PWN-Polish Scientific Publisher, Warszawa, 1981. Zbl0497.73036 · Zbl 0497.73036