×

Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators. (English) Zbl 0907.35039

Let \(L:= \sum a_{ij} (x)\partial_i \partial_j\) denote an elliptic operator on \(\mathbb{R}^n\) with measurable coefficients \(a_{ij}= a_{ji}\). Following M. C. Cerutti, L. Escauriaza and E. B. Fabes [Ann. Mat. Pura Appl., IV. Ser. 163, 161-180 (1993; Zbl 0799.35055)] a ‘good solution’ of the Dirichlet problem \(Lu=0\) in the smooth bounded domain \(\Omega \subset \mathbb{R}^n\), \(u=g\) on \(\partial \Omega\) is a limit of a sequence of classical solutions \(u_k\) to the Dirichlet problems \(L_ku_k =0\) in \(\Omega\), \(u_k=g\) on \(\partial \Omega\), where the operators \(L_k\) have a uniform ellipticity constant and their smooth coefficients tend to those of \(L\) almost everywhere. The author constructs an operator \(L\) such that for the \(n\)-dimensional unit ball \(\Omega\) \((n\geq 3)\) the Dirichlet problem above has at least two good solutions. According to this construction, nonuniqueness holds for a corresponding martingale problem related to \(L\).
Reviewer: K.J.Witsch (Essen)

MSC:

35J25 Boundary value problems for second-order elliptic equations
60G44 Martingales with continuous parameter
35R05 PDEs with low regular coefficients and/or low regular data

Citations:

Zbl 0799.35055
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] A.D. Alexandrov , Uniqueness conditions and estimates for the solutions of the Dirichlet problem , Vestnik Leningrad Univ. Math . 18 ( 1963 ), 5 - 29 , Russian; English translation Amer. Math. Soc. Trans. 68 ( 1968 ), 89 - 119 . MR 164135 | Zbl 0177.36802 · Zbl 0177.36802
[2] O. Arena - P. Manselli , A class of elliptic operators in R 3 in non-divergence form with measurable coefficients , Matematiche 48 ( 1993 ), 163 - 177 . MR 1283759 | Zbl 0799.35054 · Zbl 0799.35054
[3] A. Alvino - G. Trombetti , Second order elliptic equations whose coefficients have their first derivatives weakly Ln , Annali Mat. Pura Appl . 38 ( 331 - 340 ), 1984 . MR 779550 | Zbl 0579.35019 · Zbl 0579.35019 · doi:10.1007/BF01762551
[4] R.F. Bass - E. Padoux , Uniqueness for diffusion with piecewise constant coefficients , Probab. Theory Related Fields 76 ( 1987 ), 557 - 572 . MR 917679 | Zbl 0617.60075 · Zbl 0617.60075 · doi:10.1007/BF00960074
[5] A. Bensoussan - J.L. Lions - G. Papanicolaou , Asymptotic Analysis for Periodic Structures , North-Holland , 1978 . MR 503330 | Zbl 0404.35001 · Zbl 0404.35001
[6] L. Bers , F. John , M. Schecter , Partial differential equations , J.Wiley & S. New York , 1964 . MR 162045 | Zbl 0126.00207 · Zbl 0126.00207
[7] M.C. Cerutti - L. Escauriaza - E.B. Fabes , Uniquiness for some diffusion with discontinuous coefficients , Ann. Probab. 19 ( 1991 ), 525 - 537 . Article | MR 1106274 | Zbl 0737.60038 · Zbl 0737.60038 · doi:10.1214/aop/1176990439
[8] M.C. Cerutti - L. Escauriaza , E.B. Fabes , Uniquiness in the Dirichlet problem for some elliptic operators with discontinuous coefficients , Ann. Mat. Pura Appl. 16 ( 1993 ), 161 - 180 . MR 1219596 | Zbl 0799.35055 · Zbl 0799.35055 · doi:10.1007/BF01759020
[9] H.O. Cordes , Zero order a priori estimates for solutions of elliptic differential equations , Pros. Sympos. Pure Math. 4 Providence RI , 1961 . MR 146511 | Zbl 0178.46001 · Zbl 0178.46001
[10] M.I. Freidlin , Dirichlet’s problem for an equation with periodic coefficients depending on a small parameter , Theory Probab. Appl. 9 ( 1964 ), 121 - 125 . MR 163062 | Zbl 0138.11602 · Zbl 0138.11602
[11] D. Gilbarg - J. Serrin , On isolated singularities of solutions of second order elliptic differential equations , J. Analyse Math. 4 ( 1955 /1956), 309 - 340 . MR 81416 | Zbl 0071.09701 · Zbl 0071.09701 · doi:10.1007/BF02787726
[12] D. Gilbarg - N.S. Trudinger , Elliptic partial differential equations of second order , 2 nd ed., Springer , New York , 1983 . MR 737190 | Zbl 0562.35001 · Zbl 0562.35001
[13] N.V. Krylov , On Itô’s stochastic integral equations , Theory Probab. Appl. 14 ( 1969 ), 330 - 336 . MR 270462 | Zbl 0214.44301 · Zbl 0214.44301
[14] N.V. Krylov , Once more about connection between elliptic operators and Itô’s stochastic equations , In: Statistics and Control of Stoch. Proc., Optimiz. Software , New York , 1985 , pagg. 214 - 229 . MR 808203 | Zbl 0568.60060 · Zbl 0568.60060
[15] N.V. Krylov , One-point uniqueness for elliptic equations , Comm. Partial Differential Equations. 17 ( 1992 ), 1759 - 1784 . MR 1194740 | Zbl 0798.35039 · Zbl 0798.35039 · doi:10.1080/03605309208820904
[16] N.V. Krylov - M.V. Safonov , A certain property of solutions of parabolic equations with measurable coefficients , Math USSR Izv. 16 ( 1981 ), 151 - 164 . Zbl 0464.35035 · Zbl 0464.35035 · doi:10.1070/IM1981v016n01ABEH001283
[17] E.M. Landis , Problems, In: Some unsolved problems in the theory of differential equations and mathematical physics , Russ. Math. Surv. 44 ( 1989 ), 157 - 171 . MR 1023106 · Zbl 0703.35002
[18] E.M. Landis , Theorems on the uniqueness of solutions to the Dirichlet problem for elliptic second order equations , Russian, Trudy Moscov. Mat. Obshch. 42 ( 1981 ), 50 - 63 . MR 621994 | Zbl 0478.35037 · Zbl 0478.35037
[19] P.L. Lions , Une inégalité pour les opérateurs elliptiques du second ordere , Ann. Mat. Pura Appl. 127 ( 1981 ), 1 - 11 . MR 633391 | Zbl 0468.35040 · Zbl 0468.35040 · doi:10.1007/BF01811715
[20] P. Manselli - G. Papi , Nonhomogenuous Dirichlet problem for elliptic oprators with axially discontinuous coefficients , J. Differential Equations 55 ( 1984 ), 368 - 384 . MR 766129 | Zbl 0509.35037 · Zbl 0509.35037 · doi:10.1016/0022-0396(84)90075-5
[21] N.S. Nadirashvili , Some differentiability properties of solutions of elliptic equations with measurable coeffitients , Math. USSR-Izv. 27 ( 1986 ), 601 - 606 . Zbl 0614.35023 · Zbl 0614.35023 · doi:10.1070/IM1986v027n03ABEH001205
[22] C. Pucci , Limitazioni per soluzioni di equazioni ellitiche , Ann. Mat. Pura Appl. 74 ( 1966 ), 15 - 30 . MR 214905 | Zbl 0144.35801 · Zbl 0144.35801 · doi:10.1007/BF02416445
[23] C. Pucci - G. Talenti , Elliptic (second order) partial differential equations with measurable coefficients and approximating integral equations , Adv. Math. 19 ( 1976 ), 48 - 105 . MR 419989
[24] M.V. Safonov , Uniprovability of estimates of Holder constants for solutions of linear elliptic equations with measurable coefficients , Math. USSR Sb. 60 ( 1988 ), 269 - 281 . MR 882838 | Zbl 0656.35027 · Zbl 0656.35027 · doi:10.1070/SM1988v060n01ABEH003167
[25] M.V. Safonov , On a weak uniqueness for some elliptic equations , Comm. Partial Differential. Equations. 19 5-6 ( 1994 ), 959 - 1014 . MR 1274546 | Zbl 0803.35030 · Zbl 0803.35030 · doi:10.1080/03605309408821041
[26] D.W. Strook , S.R.S. Varadhan , Multidimentional Diffusion Processes , Springer , New York , 1979 . Zbl 0426.60069 · Zbl 0426.60069
[27] G. Talenti , Sopra una classe di equazioni ellittiche a coefficienti misurabili , Ann. Mat. Pura Appl. 69 ( 1965 ), 285 - 304 . MR 201816 | Zbl 0145.36602 · Zbl 0145.36602 · doi:10.1007/BF02414375
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.