×

zbMATH — the first resource for mathematics

Some new results on least square values for TU games. (English) Zbl 0907.90285
Summary: We present some new results concerning the least square family of values for TU games. We first examine the stability of these values from a dynamic point of view and propose a reinterpretation of them from the standpoint of the propensity to disrupt approach. In the second part, the family of individually rational least square (IRLS) values is introduced and an alternative kernel-like formulation of them is provided. Finally, we describe a natural and simple algorithm for calculating any IRLS value of a game.

MSC:
91A12 Cooperative games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banzhaf, J. F. (1965). Weighted Voting doesn’t work: A Mathematical Analysis.Rutgers Law Review 19, 317–343.
[2] Charnes, A., Rousseau, J. and Seiford, L. (1978). Complements, Mollifiers and the Propensity to Disrupt”.International Journal of Game Theory 7, 37–50. · Zbl 0373.90094 · doi:10.1007/BF01763119
[3] Davis, J. and Maschler, M. (1965). The kernel of a cooperative game.Naval Research Logistics Quarterly 12, 223–259. · Zbl 0204.20202 · doi:10.1002/nav.3800120303
[4] Gately, D. (1974). Sharing the Gains from Regional Cooperation: a Game Theoretic Application to Planning Investment in Electric Power.International Economic Review 15, 195–208. · Zbl 0276.90085 · doi:10.2307/2526099
[5] Grotte, J. H. (1976). Dynamics of Cooperative Games.International Journal of Game Theory 5, 27–64. · Zbl 0341.90072 · doi:10.1007/BF01770985
[6] Littlechid, S. C. and Vaidya, K. G. (1976). The Propensity to Disrupt and the Disruption Nucleolus of a Characteristic Function Game.International Journal of Game Theory 5, 151–161. · Zbl 0347.90073 · doi:10.1007/BF01753316
[7] Maschler, M., Peleg, B. S. and Shapley, L. S. (1979). Geometric Properties of the Kernel, Nucleolus and related Solutions Concepts.Mathematics of Operations Research 4, 303–338. · Zbl 0426.90097 · doi:10.1287/moor.4.4.303
[8] Ruiz, L. M. (1994)El Enfoque Mìnimo Cuadrático en los Juegos con Utilidad Transferible, (in Spanish), Thesis. Departamento de Economía Aplicada I, Basque Country University, Bilbao.
[9] Ruiz, L. M., Valenciano, F. and Zarzuelo, J. M. (1996). The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games Based on the Excess Vector.International Journal of Game Theory 25, 113–134. · Zbl 0855.90147 · doi:10.1007/BF01254388
[10] Ruiz, L. M., Valenciano, F. and Zarzuelo, J. M. (1998). The Family of Least Square Values for Tranferable Utility Games.Games and Economic Behavior 24, N1, 109–130. · Zbl 0910.90276 · doi:10.1006/game.1997.0622
[11] Shapley, L. S. (1953). A Value forn-Person Games.Annals of Mathematics Studies 28, 307–317. · Zbl 0050.14404
[12] Spinetto, R. D. (1971). Solution concepts of n-person cooporative games as points in the game space. Technical report No 138, Department of Operations Research, College of Engineering, Cornell University, Ithaca, NY.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.