zbMATH — the first resource for mathematics

Generic properties of singular trajectories. (English) Zbl 0907.93020
The authors consider the singular extremals of a control system on a \(\sigma\)-compact \(C^\infty\) manifold \(M\). The system is of type \[ \dot x(t)=F_0(x(t))+u(t)F_1(x(t)),\quad t\in J\equiv [T_1,T_2]. \] Let \(H_0\), \(H_1\) be the Hamiltonians canonically defined by \(F_0\), \(F_1\) on \(T^*M\), and let \(\vec{H_0}\), \(\vec{H_1}\) be the associated vector fields. The singular extremals are the solutions of the system on \(T^*M\) \[ \dot z(t)=\vec{H_0}(z(t))+u(t)\vec{H_1}(z(t)) \] satisfying the Pontryagin Maximum Principle. A singular extremal is said to be of minimum order if the set \[ \{t\in J :\{\{H_0,H_1\},H_1\}(z(t))\neq 0\} \] is dense in \(J.\) The main result proved states that there is an open dense subset \(G\) in the space of couples of \(C^\infty\) vector fields with the \(C^\infty\) Whitney topology such that the control system associated to any couple \((F_0,F_1)\in G\) has only minimal order singular trajectories, moreover each extremal trajectory is determined, up to a constant, by its projection on \(M\).

93B29 Differential-geometric methods in systems theory (MSC2000)
49N60 Regularity of solutions in optimal control
Full Text: DOI Numdam EuDML
[1] Benedetti, R.; Risler, J.J., Real algebraic and semi-algebraic sets, (1990), Hermann Paris · Zbl 0694.14006
[2] Bonnard, B., On singular extremals in the time minimal control problem in R^3, SIAM J. on control and optimization, Vol. 23, No. 5, 794-802, (1985) · Zbl 0602.49027
[3] Bonnard, B., Feedback equivalence for nonlinear systems and the time optimal control problem, SIAM J. on control and optimization, Vol. 29, No. 6, 1300-1321, (1991) · Zbl 0744.93033
[4] Bonnard, B.; Kupka, I., Théorie des singularités de l’application entrée-sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum math., Vol. 5, 111-159, (1993) · Zbl 0779.49025
[5] Bonnard, B.; Kupka, I., Deux propriétés génériques des trajectoires singulières, Note au C.R.A.S., t. 319, 509-512, (1994), série I · Zbl 0816.58013
[6] Golubitsky, M.; Guillemin, V., Stable mappings and their singularities, (1973), Springer Verlag New York · Zbl 0294.58004
[7] Goreski, M.; McPherson, R., Stratified Morse theory, (1988), Springer Verlag New York
[8] Henneaux, M.; Teitelboim, C., Quantization of gauge systems, (1992), Princeton University Press · Zbl 0838.53053
[9] Lobry, C., Une propriété générique des couples de champs de vecteur, Czech. math. J., Vol. 22, 97, 230-237, (1972) · Zbl 0242.58007
[10] Pontriaguine, L., Théorie mathématique des processus optimaux, (1974), Editions Mir Moscou · Zbl 0289.49002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.