zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcations in the mean angle of a horizontally shaken pendulum: Analysis and experiment. (English) Zbl 0908.70018
Summary: A pendulum excited by high-frequency horizontal displacement of its pivot point will vibrate with small amplitude about a mean position. The mean value is zero for small excitation amplitudes, but if the excitation is large enough the mean angle can take on non-zero values. This behavior is analyzed using the method of multiple time scales. The change in the mean angle is shown to be result of a pitchfork bifurcation, or a saddle-node bifurcation if the system is imperfect. Analytical predictions of the mean angle as a function of frequency and amplitude are confirmed by physical experiment and numerical simulation.

70K20Stability of nonlinear oscillations (general mechanics)
70K40Forced nonlinear motions (general mechanics)
70-05Experimental work (mechanics of particles and systems)
Full Text: DOI