×

On estimating the yield and volatility curves. (English) Zbl 0908.90064

Summary: Yield curve and yield volatilities are important inputs for pricing interest rate derivatives, for generation of interest rate scenarios, etc. Nonanticipated errors in their estimates may essentially influence the resulting prices, yields and risks. In this paper, we explore and compare several types of parametric and nonparametric regression models suitable for estimation of the two curves. In contrast to purely numerical fitting procedures, these methods provide also an information about the precision of the fitted curves and a test of the goodness-of-fit of the postulated parametric model. The parametric models of yield curves are represented by the nonlinear and linearized Bradley-Crane model which is compared with Nadaraya-Watson and Priestley-Chao nonparametric estimators and with cubic splines. The reported numerical experience is based on data from the Italian bond market.

MSC:

91B84 Economic time series analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
91B82 Statistical methods; economic indices and measures

Software:

nlmdl
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] A. Azzalini, A. Bowman: On the use of nonparametric regression for checking linear relationships. J. Roy. Statist. Soc. Ser. B 55 (1993), 549-557. · Zbl 0800.62222
[2] E. Barone D. Cuoco, E. Zautzik: Term structure estimation using the Cox, Ingersoll, and Ross model: The case of Italian treasury bonds. J. Fixed Income 1 (1991), 87-95.
[3] M. Bertocchi J. Dupačová, V. Moriggia: Sensitivity analysis on inputs for a bond portfolio management model. Aktuarielle Ansätze für Finanz-Risiken AFIR 1996, Proc. of the VIth AFIR Colloquium, Nuremberg (P. Albrecht, VVW Karlsruhe 1996, pp. 783-793.
[4] F. Black E. Derman, W. Toy: A one-factor model of interest rates and its application to treasury bond options. Financial Analysts J. (1990), 33-39.
[5] J. Boularan L. Ferré, P. Vieu: Growth curves: a two-stage nonparametric approach. J. Statist. Plann. Inference 38 (1994), 327-350. · Zbl 0797.62030 · doi:10.1016/0378-3758(94)90014-0
[6] A. Bowman, S. Young: Graphical comparison of nonparametric curves. Appl. Statist. 45 (1996), 83-98. · Zbl 0858.62003 · doi:10.2307/2986225
[7] S. P. Bradley, D. B. Crane: A dynamic model for bond portfolio management. Management Sci. 19 (1972), 139-151.
[8] P. Dierckx: An algorithm for smoothing, differentiation and integration of experimental data using spline functions. J. Comput. Appl. Math. 1 (1975), 165-184. · Zbl 0311.65009 · doi:10.1016/0771-050X(75)90034-0
[9] J. Dupačová, M. Bertocchi: Management of bond portfolios via stochastic programming – postoptimality and sensitivity analysis. System Modelling and Optimization, Proc. of the 17th IFIP TC7 Conference, Prague 1995 (J. Doležal and J. Fidler, Chapman & Hall, London 1996, pp. 574-582. · Zbl 0878.90003
[10] J. Dupačová M. Bertocchi, J. Abaffy: Input Analysis for a Bond Portfolio Management Model. Technical Report 24, University of Bergamo 1996.
[11] J. Dupačová M. Bertocchi, J. Abaffy: Term structure and volatility curves – A comparison of different approaches. Paper presented at the 20th EWGFM Meeting, Dubrovnik 1997. Technical Report No. 15, University of Bergamo 1997.
[12] J. Dupačová M. Bertocchi, V. Moriggia: Postoptimality for scenario based financial planning models with an application to bond portfolio management. World Wide Asset and Liability Management (W. Ziemba and J. Mulvey, Cambridge Univ. Press, Cambridge 1997 · Zbl 0939.91061
[13] R. L. Eubank, J. D. Hart: Testing goodness-of-fit in regression via order selection criteria. Ann. Statist. 20 (1992), 1412-1425. · Zbl 0776.62045 · doi:10.1214/aos/1176348775
[14] A. R. Gallant: Nonlinear Statistical Models. Wiley, New York 1987. · Zbl 0611.62071
[15] Guida al mercato obbligazionario Italiano. SIGECO Report 1994.
[16] P. Hall J. W. Kay, D. M. Titterington: Asymptotically optimal difference based estimation of variance in nonparametric regression. Biometrika 77 (1990), 521-528. · Zbl 1377.62102
[17] W. Härdle: Smoothing Techniques with Implementation in S. Springer, Berlin 1996.
[18] W. Härdle, E. Mammen: Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 (1993), 1926-1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[19] D. Heath, al: Easier done than said. Risk 5 (1992), 9.
[20] J. Hull, A. White: New ways with the yield curve. Risk 3 (1990), 13-15.
[21] J. Hull, W. White: In the common interest. Risk 5 (1992), 3.
[22] R. A. Jarrow: Modelling Fixed Income Securities and Interest Rate Options. McGraw-Hill, New York 1996. · Zbl 1079.91532
[23] R. N. Kahn: Fixed income risk modelling. The Handbook of Fixed Income Securities, Third edition (F. Fabozzi, Irwin 1991, pp. 1307-1319.
[24] M. Koenigsberg J. Showers, J. Streit: The term structure of volatility and bond option valuation. J. Fixed Income 1 (1991), 19-35.
[25] R. C. Kuberek: Predicting interest rate volatility: A conditional heteroscedastic model of interest rate movements. J. Fixed Income 1 (1992), 21-27.
[26] R. Litterman J. Scheinkman, L. Weiss: Volatility and the yield curve. J. Fixed Income 1 (1991), 49-53.
[27] R. Rebonato: Interest-rate Option Model. Wiley, New York 1996. · Zbl 0992.91500
[28] Risk Metrics – Technical Document. J. P. Morgan, New York 1995.
[29] D. Ruppert M. Wand U. Holst, O. Hössjer: Local polynomial variance function estimation. Technometrics · Zbl 0891.62029 · doi:10.2307/1271131
[30] G. A. F. Seber, C. J. Wild: Nonlinear Regression. Wiley, New York 1988. · Zbl 0721.62062
[31] R. J. Serfling R. J.: Approximation Theorems in Mathematical Statistics. Wiley, New York 1980. · Zbl 0538.62002
[32] J. S. Simonoff: Smoothing Methods in Statistics. Springer, Berlin 1996. · Zbl 0859.62035
[33] O. A. Vašíček, H. G. Fong: Term structure modeling using exponential splines. J. Finance XXXVII (1982), 339-348.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.