×

zbMATH — the first resource for mathematics

Controllability and observability of linear delay systems: An algebraic approach. (English, French) Zbl 0908.93013
Summary: Interpretations of most existing controllability and observability notions for linear delay systems are given. Module theoretic characterizations are presented. This setting enables a clear and precise comparison of the various examined notions. A new notion of controllability is introduced, which is called pi-freeness.

MSC:
93B05 Controllability
93B25 Algebraic methods
93B07 Observability
PDF BibTeX XML Cite
Full Text: DOI Link EuDML
References:
[1] Z. Bartosiewicz: Approximate controllability of neutral systems with delays in control, J. Diff. Eq., 51, 1984, 295-325. Zbl0487.93010 MR735203 · Zbl 0487.93010 · doi:10.1016/0022-0396(84)90092-5
[2] A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter: Representation and Control of Infinite Dimensional Systems, 1, 2, Birkhäuser, Boston, 1992-1993. Zbl0790.93016 MR2273323 · Zbl 0790.93016
[3] K.P.M. Bhat, H.N. Koivo: Modal characterizations of controllability and observability for time-delay systems, IEEE Trans. Automat. Contr., 21, 1976, 292-293. Zbl0325.93005 MR424297 · Zbl 0325.93005 · doi:10.1109/TAC.1976.1101165
[4] H. Bourlès, M. Fliess: Finite poles and zeros of linear systems: an intrinsic approach, Internat J. Control, 68, 1997, 897-922. Zbl1034.93009 MR1689711 · Zbl 1034.93009 · doi:10.1080/002071797223398
[5] J.W. Brewer, J.W. Bunce, F.S. Van Vleck: Linear Systems over Commutative Rings, Marcel Dekker, New York, 1986. Zbl0607.13001 MR839186 · Zbl 0607.13001
[6] D.A. Buchsbaum, D. Eisenbud: What makes a complex exact?J. Alg., 25, 1973, 259-268. Zbl0264.13007 MR314819 · Zbl 0264.13007 · doi:10.1016/0021-8693(73)90044-6
[7] C.I. Byrnes: On the control of certain deterministic, infinite-dimensional systems by algebro-geometric techniques, Amer. J. Math., 100, 1978, 1333-1381. Zbl0406.93017 MR522703 · Zbl 0406.93017 · doi:10.2307/2373976
[8] R.M. Cohn: A difference-differential basis theorem, Canad. J. Math., 22, 1970, 1224-1237. Zbl0206.05104 MR274428 · Zbl 0206.05104 · doi:10.4153/CJM-1970-141-3
[9] D. Eisenbud: Commutative Algebra with a View toward Algebraic Geometry, Springer-Verlag, New York, 1995. Zbl0819.13001 MR1322960 · Zbl 0819.13001
[10] M. Fliess: Some basic structural properties of generalized linear systems, Systems Control Lett., 15, 1990, 391-396. Zbl0727.93024 MR1084580 · Zbl 0727.93024 · doi:10.1016/0167-6911(90)90062-Y
[11] M. Fliess: A remark on Willems’ trajectory characterization of linear controllability, Systems Control Lett., 19, 1992, 43-45. Zbl0765.93003 MR1170986 · Zbl 0765.93003 · doi:10.1016/0167-6911(92)90038-T
[12] M. Fliess: Reversible linear and non linear discrete time dynamics, IEEE Trans. Automat. Contr., 37, 1992, 1144-1153. Zbl0764.93058 MR1178584 · Zbl 0764.93058 · doi:10.1109/9.151095
[13] M. Fliess: Une interprétation algébrique de la transformation de Laplace et des matrices de transfert, Linear Alg. Appl., 203-204, 1994, 429-442. Zbl0802.93010 MR1275520 · Zbl 0802.93010 · doi:10.1016/0024-3795(94)90212-7
[14] M. Fliess, H. Bourlès: Discussing some examples of linear systems interconnections, Systems Control Lett., 27, 1996, 1-7. Zbl0877.93064 MR1375906 · Zbl 0877.93064 · doi:10.1016/0167-6911(95)00029-1
[15] M. Fliess, R. Hotzel: Sur les systèmes linéaires à dérivation non entière, C.R. Acad. Sci. Paris II, 324, 1997, 99-105. Zbl0870.93024 · Zbl 0870.93024 · doi:10.1016/S1251-8069(99)80013-X
[16] M. Fliess, H. Mounier: Quelques propriétés structurelles des systèmes linéaires à retards constants, C. R. Acad. Sci. Paris I, 319, 1994, 289-294. Zbl0805.93001 MR1288420 · Zbl 0805.93001
[17] M. Fliess, H. Mounier: Interpretation and comparison of various types of delay system controllabilities, In Proc. IFAC Conference System, Structure and Control, Nantes, 1995, 330-335.
[18] E. Fornasini, M.E. Valcher: A polynomial matrix approach to the behavioral analysis of nd systems, In 3rd European Control Conference Proc., Rome, 1995, 1757-1762.
[19] H. Glüsing-Lüer\beta en: A behavioral approach to delay differential systems, SIAM J. Contr. Opt., 35, 1997, 480-499. Zbl0876.93022 MR1436634 · Zbl 0876.93022 · doi:10.1137/S0363012995281869
[20] A. Grothendieck, J.A. Dieudonné: Eléments de géométrie algébrique I, Springer-Verlag, Berlin1971. Zbl0203.23301 · Zbl 0203.23301
[21] R. Hartshorne: Algebraic Geometry, Springer-Verlag, NewYork, 1977. Zbl0367.14001 MR463157 · Zbl 0367.14001
[22] R.E. Kalman, P.L. Falb, M.A. Arbib: Topics in Mathematical Systems Theory, McGraw-Hill, New York, 1969. Zbl0231.49001 MR255260 · Zbl 0231.49001
[23] E.W. Kamen: On an algebraic theory of systems defined by convolution operators, Math. Syst. Theory, 9, 1975, 57-74. Zbl0318.93003 MR395953 · Zbl 0318.93003 · doi:10.1007/BF01698126
[24] E.W. Kamen: An operator theory of linear functional differential equations, J. Diff. Eq., 27, 1978, 274-297. Zbl0365.34080 MR480283 · Zbl 0365.34080
[25] E.W. Kamen, P.P. Khargonekar, A. Tannenbaum: Proper stable Bezout factorization and feedback control of linear time-delay systems, Internat. J. Control, 43, 1986, 837-857. Zbl0599.93047 MR828360 · Zbl 0599.93047 · doi:10.1080/00207178608933506
[26] T.Y. Lam: Serre’s Conjecture, Springer-Verlag, Berlin, 1978. Zbl0373.13004 MR485842 · Zbl 0373.13004
[27] S. Lang: Algebra, 3rd ed., Addison-Wesley, Reading, MA, 1993. Zbl0848.13001 MR197234 · Zbl 0848.13001
[28] E.B. Lee, S. Neftci, A. Olbrot: Canonical forms for time delay systems, IEEE Trans. Automat. Contr., 27, 1982, 128-132. Zbl0469.93027 MR673080 · Zbl 0469.93027 · doi:10.1109/TAC.1982.1102877
[29] E.B. Lee, A. Olbrot: Observability and related structural results for linear hereditary systems, Internat. I. Control, 34, 1981, 1061-1078. Zbl0531.93015 MR643872 · Zbl 0531.93015 · doi:10.1080/00207178108922582
[30] A. Manitius, R. Triggiani: Function space controllability of retarded systems: a derivation from abstract operator conditions, SIAM J. Contr. Opt., 16, 1978, 599-645. Zbl0442.93009 MR482505 · Zbl 0442.93009 · doi:10.1137/0316041
[31] A.S. Morse: Ring models for delay-differential systems, Automatica, 12, 1976, 529-531. Zbl0345.93023 MR437162 · Zbl 0345.93023 · doi:10.1016/0005-1098(76)90013-3
[32] H. Mounier: Propriétés structurelles des systèmes linéaires à retards : aspects théoriques et pratiques, Thèse, Université Paris-Sud, Orsay, 1995.
[33] H. Mounier: Algebraic interpretations of the spectral controllability of a linear delay system, Forum Math., 10, 1998, 39-58. Zbl0891.93014 MR1490137 · Zbl 0891.93014 · doi:10.1515/form.10.1.39
[34] H. Mounier: Stabilization of a class of linear delay systems, Math. Comp. Sim., 45, 1998, 329-338. Zbl1017.93514 MR1622411 · Zbl 1017.93514 · doi:10.1016/S0378-4754(97)00112-2
[35] H. Mounier, J. Rudolph, M. Fliess, P. Rouchon: Tracking control of a vibrating string with an interior mass viewed as a delay system, ESAIM: Control Optimisation and Calculus of Variations, http://www.emath.fr/cocv/, 3, 1998, 315-321. Zbl0906.73046 MR1644431 · Zbl 0906.73046 · doi:10.1051/cocv:1998112 · www.edpsciences.org · eudml:90526
[36] H. Mounier, P. Rouchon, J. Rudolph: Some examples of linear delay systems, RAIRO-JESA-APII, 31, 1997, 911-925.
[37] H. Mounier, P. Rouchon, J. Rudolph: \pi -freeness of a long electric line, Comput. Eng. in Syst. Appl. IMACS Multiconference, Lille, 1996, 28-29.
[38] D.A. O’Connor, T.J. Tarn: On the function space controllability of linear neutral systems, SIAM J. Contr. Opt., 21, 1983, 306-329. Zbl0509.93014 MR690229 · Zbl 0509.93014 · doi:10.1137/0321018
[39] P. Picard, J.F. Lafay: Further results on controllability of linear systems with delays, In European Control Conference Proc., Rome, 1995, 3313-3318.
[40] D. Quillen: Projective modules over polynomial rings, Inv. Math., 36, 1976, 167-171. Zbl0337.13011 MR427303 · Zbl 0337.13011 · doi:10.1007/BF01390008 · eudml:142417
[41] P. Rocha, J. Willems: Behavioral controllability of D-D systems, SIAM J. Contr. Opt., 35, 1997, 254-264. Zbl0872.93013 MR1430293 · Zbl 0872.93013 · doi:10.1137/S0363012995283054
[42] J. Rotman: An Introduction to Homological Algebra, Academic Press, New-York, 1979. Zbl0441.18018 MR538169 · Zbl 0441.18018
[43] L.H. Rowen: Ring Theory, Academic Press, Boston, 1991. Zbl0743.16001 MR1095047 · Zbl 0743.16001
[44] J.P. Serre: Faisceaux algébriques cohérents, Annals of Math., 61, 1955, 197-278. Zbl0067.16201 MR68874 · Zbl 0067.16201 · doi:10.2307/1969915
[45] E.D. Sontag: Linear systems over commutative rings: a survey, Richerche di Automatica, 7, 1976, 1-34. Zbl0522.93020 · Zbl 0522.93020
[46] M.W. Spong, T.J. Tarn: On the spectral controllability of delay-differential equations, IEEE Trans. Automat. Contr., 26, 1981, 527-528. Zbl0474.93014 MR613571 · Zbl 0474.93014 · doi:10.1109/TAC.1981.1102654
[47] A.A. Suslin: Projective modules over a polynomial ring are free (in Russian), Dokl. Akad. Nauk. S.S.S.R., 229, 1976, 1063-1066; English translation: Soviet Math. Dokl., 17, 1160-1164. Zbl0354.13010 MR469905 · Zbl 0354.13010
[48] Y. Yamamoto: Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems, SIAM J. Contr. Opt., 27, 1989, 217-234. Zbl0671.93003 MR980231 · Zbl 0671.93003 · doi:10.1137/0327012
[49] D.C. Youla, G. Gnavi: Notes on n-dimensional system theory, IEEE Trans. Circuits Syst., 26, 1979, 105-111. Zbl0394.93004 MR521657 · Zbl 0394.93004 · doi:10.1109/TCS.1979.1084614
[50] D.C. Youla, P.F. Pickel: The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Trans. Circuits Syst., 31, 1984, 513-518. Zbl0553.13003 MR747050 · Zbl 0553.13003 · doi:10.1109/TCS.1984.1085545
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.