zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and uniqueness of “entropy” solutions of parabolic problems with $L^1$ data. (English) Zbl 0909.35075
From the introduction: The author solves the parabolic equation $$u_t- \text{div}(A(t, x,\nabla u))= f\quad\text{in }]0, T[\times\Omega,\quad u= 0\quad\text{on }]0, T[\times\partial\Omega,\quad u(0,.)= u_0\quad\text{in }\Omega$$ with $u_0$ in $L^1(\Omega)$ and $f$ in $L^1(]0,T[\times \Omega)$ where $\Omega$ is an open bounded set of $\bbfR^N$ and $A$ is a Carathéodory function, satisfying some coercivity, monotonicity and growth conditions of Leray-Lions type, and defining an operator on $L^p(]0, T[; W^{1,p}_0(\Omega))$. In order to obtain an existence uniqueness result, an entropy formulation is proposed, which is very close to the one which has been introduced for the elliptic case in [{\it P. Bénilan}, {\it L. Boccardo}, {\it T. Gallouët}, {\it R. Gariepy}, {\it M. Pierre} and {\it J. L. Vasquez}, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22, 241-273 (1995; Zbl 0866.35037)].

35K60Nonlinear initial value problems for linear parabolic equations
35D05Existence of generalized solutions of PDE (MSC2000)
35R05PDEs with discontinuous coefficients or data
Full Text: DOI
[1] ANDREU, F., MAZÓN, J. M., SEGURA DE LEÓN, S. and TOLEDO, J., Existence and uniqueness for a degenerate parabolic equation with l1-data, submitted. · Zbl 0912.35092
[2] Bénilan, P.; Boccardo, L.; Gallouët, T.; Gariepy, R.; Pierre, M.; Vasquez, J.L.: An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. scuola norm. Sup. Pisa cl. Sci. 22, 241-273 (1995) · Zbl 0866.35037
[3] Blanchard, D.: Truncations and monotonicity methods for parabolic equations. Nonlinear analysis 21, 725-743 (1993) · Zbl 0796.35077
[4] BLANCHARD, D. and MURAT, F., Renormalized solutions of non linear parabolic problems with L1 data: Existence and uniqueness, submitted.
[5] Boccardo, L.; Gallouët, T.: Nonlinear elliptic and parabolic equations involving mesure data. J. funct. Anal. 87, 149-169 (1989) · Zbl 0707.35060
[6] Boccardo, L.; Murat, F.: A property of nonlinear elliptic equations with the source term a measure. Potential analysis 3, 257-263 (1994) · Zbl 0807.35034
[7] Gagneux, G.; Madaune-Tort, M.: Analyse mathématique de modèles non linéaires de l’ingeniérie pétrolière. Mathématiques et applications 22 (1996)
[8] Leray, J.; Lions, J.-L.: Quelques résultats de višik sur LES problèmes elliptiques non linéaires par LES méthodes de minty-Browder. Bull. soc. Math. France 93, 97-107 (1965) · Zbl 0132.10502
[9] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. (1969)
[10] Lions, J.-L.; Magenes, E.: Problèmes aux limites non homogènes et applications. (1968) · Zbl 0165.10801
[11] Lions, P. L. and Murat, F., Sur les solutions renormalisées d’équations elliptiques non linéaires, in preparation.
[12] Murat, F.: Soluciones renormalizadas de EDP elipticas no lineales. (1993)
[13] Prignet, A.: Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. Rendiconti di matematica 15, 321-337 (1995) · Zbl 0843.35127
[14] Serrin, J.: Pathological solutions of elliptic differential equations. Ann. scuola norm. Sup. Pisa cl. Sci., 385-387 (1964) · Zbl 0142.37601
[15] Simon, J.: Compact sets in the space LP (0, T; B). Ann. matematica pura applicata, 65-96 (1987)