×

Distribution of cycle lengths of inifinite permutations. (English. Russian original) Zbl 0909.60011

J. Math. Sci., New York 87, No. 6, 4072-4081 (1997); translation from Zap. Nauchn. Semin. POMI 223, 148-161 (1995).
See the review in Zbl 0887.60011.

MSC:

60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
43A05 Measures on groups and semigroups, etc.

Citations:

Zbl 0887.60011
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. M. Vershik and A. A. Schmidt, ”Limit measures arising in the asymptotic theory of symmetric groups. I”,Theor. Prob. Appl.,22, 79–85 (1977). · Zbl 0375.60007
[2] A. M. Vershik and A. A. Schmidt, ”Limit measures arising in the asymptotic theory of symmetric groups. II”,Theor. Prob. Appl.,23, 36–49 (1978). · Zbl 0423.60009
[3] S. V. Kerov, G. I. Olshanski, and A. M. Vershik, ”Harmonic analysis on the infinite symmetric group”,Comptes Rend. Acad. Sci. Paris,316, 773–778 (1993). · Zbl 0796.43005
[4] W. Feller,An Introduction to Probability Theory and Its Applications, Vol. 1, John Wiley & Sons, New York (1950). · Zbl 0039.13201
[5] Ts. Ignatov, ”On a constant arising in the asymptotic theory of symmetric groups, and on Poisson-Dirichlet measures”,Theor. Prob. Appl.,27, 136–147 (1982). · Zbl 0559.60046
[6] W. J. Ewens, ”The sampling theory of selectively neutral alleles”,Theor. Pop. Biol.,3, 87–112 (1972). · Zbl 0245.92009
[7] J. F. C. Kingman, ”Random partitions in population genetics”,Proc. R. Soc. Lond. A,361, 1–20 (1978). · Zbl 0393.92011
[8] G. A. Watterson, ”The stationary distribution of the infinitely many neutral alleles diffusion model”,J. Appl. Probab.,B, 639–651 (1976). · Zbl 0356.92012
[9] A. N. Shiryaev,Probability [in Russian], Nauka, Moscow (1980). · Zbl 0508.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.