×

zbMATH — the first resource for mathematics

\(D^\dagger (\infty)\)-affinité des schémas projectifs. (\(D^\dagger (\infty)\)-affinity of projective schemes.). (French) Zbl 0910.14005
Suppose \(X\) is a smooth projective \(p\)-adic formal scheme, \(U=X-D\) the complement of an ample divisor. Then Berthelot has defined a sheaf (on \(X)\) of overconvergent differential operators. Here it is shown that coherent modules over this sheaf satisfy the usual “Theorem A” and “Theorem B”. Previously this was known for affine space (with its canonical compactification). The proof uses various filtrations and clever choices of integral models.
At the end it is also shown that the category of coherent overconvergent \(D\)-modules is invariant under maps of compactifications \(f:(U,X) \to(U',X')\) with \(U=U'\).
Reviewer: G.Faltings (Bonn)

MSC:
14F30 \(p\)-adic cohomology, crystalline cohomology
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14G20 Local ground fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] P. BERTHELOT, D✝Q-modules cohérents II. Descente par Frobenius, en cours de rédaction, 1995.
[2] P. BERTHELOT, D✝Q-modules cohérents III. Images directes et réciproques, en cours de rédaction, 1995.
[3] P. BERTHELOT, Cohomologie rigide et cohomologie rigide à supports propres, Preprint de l’IRMAR, 1996.
[4] P. BERTHELOT, D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. scient. Éc. Norm. Sup., 4e série, t. 29 (1996), 185-272. · Zbl 0886.14004
[5] P. BERTHELOT, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math., 128 (1997), 329-377. · Zbl 0908.14005
[6] A. BOREL et al., Algebraic D-modules, Perspectives in Math., Academic Press, 2, 1987. · Zbl 0642.32001
[7] A. GROTHENDIECK and J. DIEUDONNÉ, EGA IV. Étude locale des schémas et des morphismes de schémas, 4e partie, Publ. Math. IHES, 32 (1967). · Zbl 0153.22301
[8] C. HUYGHE, Construction et étude de la transformation de Fourier pour LES D-modules arithmétiques, Thèse de Doctorat, Université de Rennes I, 1995.
[9] C. HUYGHE, Interprétation géométrique sur l’espace projectif des AN(K)✝-modules cohérents, C. R. Acad. Sci. Paris, t. 321, Série I, (1995), 587-590. · Zbl 0872.14010
[10] C. HUYGHE, D✝-affinité de l’espace projectif, avec un appendice de P. Berthelot, Compositio Mathematica, 108, No. 3 (1997), 277-318. · Zbl 0956.14010
[11] C. HUYGHE, Compléments sur le faisceau des opérateurs différentiels arithmétiques à pôles surconvergents le long d’un diviseur, en préparation, 1998.
[12] F. LOESER, Principe de boyarski et D-modules, Mathematische Annalen, 306 (1996), 125-157. · Zbl 0911.14012
[13] Z. MEBKHOUT and L. NARVAEZ-MACARRO, Sur LES coefficients de de Rham - Grothendieck des variétés algébriques, Proc. Conf. p-adic Analysis (Trento 1989), Lecture Notes in Math., Springer-Verlag, 1454, p. 267-308, 1990. · Zbl 0727.14011
[14] D. MEREDITH, Weak formal schemes, Nagoya Math. J., 45 (1971), 1-38. · Zbl 0231.14001
[15] P. MONSKY and G. WASHNITZER, Formal cohomology I, Annals of Math., 88 (1968), 181-217. · Zbl 0162.52504
[16] M. RAYNAUD, Géométrie analytique rigide d’après Tate, kiehl, ..., Bull. Soc. Math. France, Mémoire 39/40 (1974), 319-327. · Zbl 0299.14003
[17] A. VIRRION, Théorème de dualité relative pour LES D-modules arithmétiques, C. R. Acad. Sci. Paris, t. 321, Série I (1995), 751-754. · Zbl 0876.14011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.