×

Transformed empirical processes and modified Kolmogorov-Smirnov tests for multivariate distributions. (English) Zbl 0910.62044

Let \((X_1,...,X_n) \) be a sample of i.i.d. random variables with distribution \(F\) on \(R^d\), \(d\geq 1\). Consider \(H_0: F=F_0\) and a family of alternatives \(H_n: F=F^{(\delta/\sqrt{n})}\), where \(F^{(\tau)}\) is contiguous to \(F^{(0)}=F_0\) with density \(f^{(\tau)}\) with respect to \(F_0\), and such that there exists an \(L^2(R^d,dF_0)\) function \(k=k(x)\) satisfying \[ \| \frac{1}{\tau}(\sqrt{f^{(\tau)}}-1) -\frac{k}{2}\|_{L^2}\to 0\;\text{as} \tau \to 0. \] The aim of the paper is the construction of goodness-of-fit tests based on signed measures \(\hat{w}_x\) (\(x\in R^d\)) such that the following holds:
\((a)\) When \(x\) is replaced by a random variable \(X\), the resulting measure \(\hat{w}_X(A)\) evaluated on any measurable set \(A\) is a random variable; \((b)\) The measure \(\hat{w}_n=n^{-1/2}\sum_{k=1}^{n}\hat{w}_{X_k}\) associated with the sample has some normalized limit distribution under \(H_0\); \((c)\) The asymptotic distributions of \(\hat{w}_n\) under \(H_n\) and \(H_0\) differ as much as possible.
These random measures will be called a transformed empirical processes (in short: TEP). They play, in the construction of goodness-of-fit tests, the same role as the empirical processes in classical Kolmogorov-Smirnov tests. The resulting tests are consistent against any fixt alternative, and, for each sequence of contiguous alternatives, a test in each class can be chosen so as to optimize the discrimination of those alternatives.

MSC:

62G10 Nonparametric hypothesis testing
62H15 Hypothesis testing in multivariate analysis
62G30 Order statistics; empirical distribution functions
62G20 Asymptotic properties of nonparametric inference
60G15 Gaussian processes
Full Text: DOI

References:

[1] Caba na, A. (1993). Transformations du pont brownien empirique et tests de ty pe Kolmogorov- Smirnov. C.R. Acad. Sci. Paris Sér. I. Math. 317 315-318. · Zbl 0780.60077
[2] Caba na, A. (1996). Transformations of the empirical process and Kolmogorov-Smirnov tests. Ann. Statist. 24 2020-2035. · Zbl 0867.62038 · doi:10.1214/aos/1069362307
[3] Caba na, A. and Caba na, E. M. (1996). Bridge-to-bridge transformations and Kolmogorov- Smirnov tests. Comm. Statist. Theory Methods 25 227-234. · Zbl 0875.62174 · doi:10.1080/03610929608831690
[4] Donsker, M. D. (1952). Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 277-281. · Zbl 0046.35103 · doi:10.1214/aoms/1177729445
[5] Efron, B. and Johnston, I. (1990). Fisher’s information in terms of hazard rate. Ann. Statist. 18 38-62. · Zbl 0722.62022 · doi:10.1214/aos/1176347492
[6] Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric maximum likelihood estimation. DMV Sem. 19. Birkhäuser, Boston. · Zbl 0757.62017
[7] Hájek, J. and Sidák, Z. (1967). Theory of Rank Tests. Academic Press, New York. · Zbl 0161.38102
[8] Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York. · Zbl 0734.60060
[9] Khmaladze, E. V. (1981). Martingale approach in the theory of goodness-of-fit. Theory Probab. Appl. 26 240-257. · Zbl 0454.60049
[10] Khmaladze, E. V. (1993). Goodness-of-fit problem and scanning innovation martingales. Ann. Statist. 21 798-829. · Zbl 0801.62043 · doi:10.1214/aos/1176349152
[11] Le Cam L. and Yang, G. L. (1990). Asy mptotics in Statistics. Some Basic Concepts. Springer, New York.
[12] Morán, M. and Urbina, W. (1996). Some properties of the Gaussian-Hilbert transform. Unpublished manuscript.
[13] Oosterhoff, J. and van Zwet, W. R. (1979). A note on contiguity and Hellinger distance. In Contributions to Statistics. Jaroslav Hájek Memorial Volume (J. Jore cková, ed.) 157- 166. Reidel, Dordrecht. · Zbl 0418.62020
[14] Ossiander, M. (1987). A central limit theorem under metric entropy with L2 bracketing. Ann. Probab. 15 897-919. · Zbl 0665.60036 · doi:10.1214/aop/1176992072
[15] Ritov, J. and Wellner, J. A. (1988). Censoring, martingales and the Cox model. Contemp. Math. 80 191-220. · Zbl 0684.62072
[16] Sansone, G. (1959). Orthogonal Functions (R. Courant, L. Bers and J. J. Stoker, eds.) Pure and Applied Mathematics 9. Interscience, New York. · Zbl 0084.06106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.