zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Expanded mixed finite element methods for linear second-order elliptic problems. I. (English) Zbl 0910.65079
This is the first paper of a series in which the author presents a new mixed formulation for the numerical solution of second-order elliptic problems. This new formulation expands the standard mixed formulation in the sense that three variables are explicitly treated: the scalar unknown, its gradient, and its flux (the coefficient times the gradient). Based on this formulation, mixed finite element approximations of the second-order elliptic problems are considered. Optimal order error estimates in the $L^p$- and $H^{-s}$-norms are obtained for the mixed approximations. Various implementation techniques for solving systems of algebraic equations are discussed. A postprocessing method for improving the scalar variable is analyzed, and superconvergent estimates in the $L^p$-norm are derived. The mixed formulation is suitable for the case where the coefficient of differential equations is a small tensor and does not need to be inverted.
Reviewer: K.Najzar (Praha)

MSC:
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
35J25Second order elliptic equations, boundary value problems
65N12Stability and convergence of numerical methods (BVP of PDE)
65N15Error bounds (BVP of PDE)
WorldCat.org
Full Text: EuDML
References:
[1] T. ARBOGAST and Z. CHEN, On the implementation of mixed methods as nonconforming methods for second order elliptic problems, Math. Comp. 64 (1995), 943-972. Zbl0829.65127 MR1303084 · Zbl 0829.65127 · doi:10.2307/2153478
[2] [2] D. ARNOLD and F. BREZZI, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modèl. Math. Anal. Numér. 19 (1985), 7-32. Zbl0567.65078 MR813687 · Zbl 0567.65078 · eudml:193443
[3] J. BRAMBLE and J. PASCIAK, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp. 50 (1988), 1-17. Zbl0643.65017 MR917816 · Zbl 0643.65017 · doi:10.2307/2007912
[4] [4] F. BREZZI, J. Jr. DOUGLAS, R. DURÁN and M. FORTIN, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), 237-250. Zbl0631.65107 MR890035 · Zbl 0631.65107 · doi:10.1007/BF01396752 · eudml:133194
[5] [5] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. MARINI, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal. Numér. 21 (1987), 581-604. Zbl0689.65065 MR921828 · Zbl 0689.65065 · eudml:193515
[6] [6] F. BREZZI, J. Jr. DOUGLAS and L. MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. Zbl0599.65072 MR799685 · Zbl 0599.65072 · doi:10.1007/BF01389710 · eudml:133032
[7] R. CHANDRA, Conjugate gradient methods for partial differential equations, Report 129, Computer Science Department, Yale University, New Haven, CT (1978).
[8] M. CELIA and P. BINNING, Two-phase unsaturated flow. one dimensional simulation and air phase velocities, Water Resources Research 28 (1992), 2819-2828.
[9] Z. CHEN, Unified analysis of the hybrid form of mixed finite elements for second order elliptic problems, J. Engng. Math. 8 (1991), 91-102.
[10] [10] Z. CHEN, Analysis of mixed methods using conforming and nonconforming finite element methods, RAIRO Modèl. Math. Anal. Numér. 27 (1993), 9-34. Zbl0784.65075 MR1204626 · Zbl 0784.65075 · eudml:193697
[11] Z. CHEN, Lp-posteriori error analysis of mixed methods for linear and quasilinear elliptic problems, in Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, I. Babuska et al., eds., The IMA Volumes in Mathematics and its Applications, Springer-Verlag, Berlin and New York, 75 (1995), 187-200. Zbl0831.65110 MR1370251 · Zbl 0831.65110
[12] Z. CHEN, BDM mixed methods for a nonlinear elliptic problem, J. Comp. Appl. Math. 53 (1994), 207-223. Zbl0819.65129 MR1306126 · Zbl 0819.65129 · doi:10.1016/0377-0427(94)90046-9
[13] Z. CHEN, Expanded mixed finite element methods for quasilinear second order elliptic problems II, IMA Prepnnt Series # 1278, 1994, RAIRO Modèl. Math. anal. Numér., in press. Zbl0910.65080 MR1637069 · Zbl 0910.65080 · eudml:193884
[14] Z. CHEN and J. Jr. DOUGLAS, Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989), 135-148. Zbl0711.65089 MR1083050 · Zbl 0711.65089 · doi:10.1007/BF02575725
[15] J. Jr. DOUGLAS, R. DURÁN and P. PIETRA, Formulation of altemating-direction iterative methods for mixed methods in three space, in the Proceedings of the Simposium Internacional de Analisis Numérico, E. Ortiz, éd., Madrid (1987),21-30. Zbl0609.65071 MR899777 · Zbl 0609.65071
[16] J. Jr. DOUGLAS, R. DURÁN and P. PIETRA, Alternating-direction iteration for mixed finite element methods, in the Proceedings of the Seventh International Conference on Computing Methods in Applied Sciences and Engineering VII, R. Glowinski and J. L. Lions, eds., North-Holland, December (1986). Zbl0677.65105 MR905295 · Zbl 0677.65105
[17] [17] J. DOUGLAS, R. EWING and M. WHEELER, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér. 17 (1983), 17-33. Zbl0516.76094 MR695450 · Zbl 0516.76094 · eudml:193407
[18] [18] J. Jr. DOUGLAS, R. EWING and M. WHEELER, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal. Numér. 17 (1983), 249-265. Zbl0526.76094 MR702137 · Zbl 0526.76094 · eudml:193417
[19] J. Jr. DOUGLAS and P. PIETRA, A description of some alternating-direction techniques for mixed finite element methods, in Mathematical and Computational Methods in Seismic Exploration and Reservoir Modeling, SIAM, Philadelphia, PA (1985), 37-53.
[20] J. Jr. DOUGLAS and J. ROBERTS, Global estimates for mixed methods for second order elliptic problems, Math. Comp.. 45 (1985), 39-52. Zbl0624.65109 MR771029 · Zbl 0624.65109 · doi:10.2307/2007791
[21] J. Jr. DOUGLAS and J. WANG, A new family of mixed finite element spaces over rectangles, Mat. Aplic. Comput. 12 (1993), 183-197. Zbl0806.65109 MR1288240 · Zbl 0806.65109
[22] [22] R. DURÁN, Error analysis in Lp, 1 \leq p \leq \infty , for mixed finite element methods for linear and quasi-linear elliptic problems, RAIRO Mod. Math. Anal. Numér. 22 (1988), 371-387. Zbl0698.65060 MR958875 · Zbl 0698.65060 · eudml:193534
[23] R. EWING, R. LAZAROV P. LU and P. VASSILEVSKI, Preconditioning indefinite systems arising from the mixed finite element discretization of second order elliptic systems, in Preconditioned Conjugate Gradient Methods, O. Axelsson and L. Kolotilina, eds., Lecture Notes in Math. 1457, Springer-Verlag, Berlin (1990), 28-43. Zbl0719.65024 MR1101627 · Zbl 0719.65024
[24] [24] L. FRANCA and A. LOULA, A new mixed finite element method for the Timoshenko beam problem, RAIRO Mod. Math. Anal. Numér. 25 (1991), 561-578. Zbl0779.73059 MR1111655 · Zbl 0779.73059 · eudml:193640
[25] [25] L. GASTALDI and R. NOCHETTO, Optimal L\infty -error estimates for nonconforming and mixed finite element methods of lowest order, Numer. Math. 50 (1987), 587-611. Zbl0597.65080 MR880337 · Zbl 0597.65080 · doi:10.1007/BF01408578 · eudml:133174
[26] D. GILBARG and N. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer Verlag, Berlin, 1977. Zbl0361.35003 MR473443 · Zbl 0361.35003
[27] [27] J. C. NEDELEC, Mixed finite elements in R3, Numer. Math. 35 (1980) 315-341. Zbl0419.65069 MR592160 · Zbl 0419.65069 · doi:10.1007/BF01396415 · eudml:186293
[28] [28] J. C. NEDELEC, A new family of mixed finite elements in R3, Numer. Math. 50 (1986), 57- 81. Zbl0625.65107 MR864305 · Zbl 0625.65107 · doi:10.1007/BF01389668 · eudml:133139
[29] C. PAIGE and M. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM Numer. anal. 12 (1975), 617-629. Zbl0319.65025 MR383715 · Zbl 0319.65025 · doi:10.1137/0712047
[30] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for second order elliptic problems, Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315. Zbl0362.65089 MR483555 · Zbl 0362.65089
[31] T. RUSTEN and R. WINTHER, A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal. Appl. 13 (1992), 887-904. Zbl0760.65033 MR1168084 · Zbl 0760.65033 · doi:10.1137/0613054
[32] [32] R. STENBERG, Postprocessing schemes for some mixed finite elements, RAIRO Modèl. Math. Anal. Numér. 25 (1991), 151-167. Zbl0717.65081 MR1086845 · Zbl 0717.65081 · eudml:193618
[33] J. TOUMA and M. VAUCLIN, Experimental and numencal analysis of two phase infiltration in a partially saturated soil, Transport in Porous Media 1 (1986), 27-55.